MISSING DATA SAMPLES: SYSTEMATIZATION AND CONDUCTING METHODS-A REVIEW

IF 0.5 Q3 MATHEMATICS
Ivana D. Ilić, Jelena Višnjić, B. Randjelovic, Vojislav Mitic
{"title":"MISSING DATA SAMPLES: SYSTEMATIZATION AND CONDUCTING METHODS-A REVIEW","authors":"Ivana D. Ilić, Jelena Višnjić, B. Randjelovic, Vojislav Mitic","doi":"10.22190/FUMI201118016I","DOIUrl":null,"url":null,"abstract":"This paper investigates the phenomenon of the incomplete data samples by analyzing their structure and also resolves the necessary procedures regularly used in missing data analysis. The research gives a crucial perceptive of the techniques and mechanisms needed in dealing with missing data issues in general. The motivation for writing this brief overview of the topic lies in the fact that statistical researchers inevitably meet missing data in their analysis. The authors examine the applicability of regular approaches for handling the missing data situations. Based on several previously published results, the authors provide an example of the incomplete data sample model that can be implemented when confronting with specific missing data patterns. ","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"14 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/FUMI201118016I","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the phenomenon of the incomplete data samples by analyzing their structure and also resolves the necessary procedures regularly used in missing data analysis. The research gives a crucial perceptive of the techniques and mechanisms needed in dealing with missing data issues in general. The motivation for writing this brief overview of the topic lies in the fact that statistical researchers inevitably meet missing data in their analysis. The authors examine the applicability of regular approaches for handling the missing data situations. Based on several previously published results, the authors provide an example of the incomplete data sample model that can be implemented when confronting with specific missing data patterns. 
缺失数据样本:系统化和实施方法综述
本文通过分析数据样本的结构,探讨了数据样本不完整的现象,并解决了缺失数据分析中经常使用的必要程序。这项研究对处理一般缺失数据问题所需的技术和机制提供了重要的认识。写这个主题的简要概述的动机在于统计研究人员在他们的分析中不可避免地遇到丢失的数据。作者检查了常规方法在处理丢失数据情况下的适用性。基于先前发表的几个结果,作者提供了一个不完整数据样本模型的示例,该模型可以在面对特定的缺失数据模式时实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信