The integral monodromy of the cycle type singularities

IF 0.4 Q4 MATHEMATICS
C. Hertling, Makiko Mase
{"title":"The integral monodromy of the cycle type singularities","authors":"C. Hertling, Makiko Mase","doi":"10.5427/jsing.2022.25l","DOIUrl":null,"url":null,"abstract":"The middle homology of the Milnor fiber of a quasihomogeneous polynomial with an isolated singularity is a ${\\mathbb Z}$-lattice and comes equipped with an automorphism of finite order, the integral monodromy. Orlik (1972) made a precise conjecture, which would determine this monodromy in terms of the weights of the polynomial. Here we prove this conjecture for the cycle type singularities. A paper of Cooper (1982) with the same aim contained two mistakes. Still it is very useful. We build on it and correct the mistakes. We give additional algebraic and combinatorial results.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2022.25l","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The middle homology of the Milnor fiber of a quasihomogeneous polynomial with an isolated singularity is a ${\mathbb Z}$-lattice and comes equipped with an automorphism of finite order, the integral monodromy. Orlik (1972) made a precise conjecture, which would determine this monodromy in terms of the weights of the polynomial. Here we prove this conjecture for the cycle type singularities. A paper of Cooper (1982) with the same aim contained two mistakes. Still it is very useful. We build on it and correct the mistakes. We give additional algebraic and combinatorial results.
循环型奇点的积分单性
具有孤立奇点的拟齐次多项式的Milnor纤维的中同调是${\mathbb Z}$-晶格,并具有有限阶的自同构,即积分单构。Orlik(1972)做了一个精确的猜想,根据多项式的权重来确定这个单态。这里我们证明了这个猜想对于环型奇点。Cooper(1982)的一篇同样目的的论文有两个错误。不过它还是很有用的。我们在此基础上继续努力,改正错误。我们给出了额外的代数和组合结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信