Longest Gapped Repeats and Palindromes

IF 0.7 4区 数学
Marius Dumitran, Paweł Gawrychowski, F. Manea
{"title":"Longest Gapped Repeats and Palindromes","authors":"Marius Dumitran, Paweł Gawrychowski, F. Manea","doi":"10.23638/DMTCS-19-4-4","DOIUrl":null,"url":null,"abstract":"A gapped repeat (respectively, palindrome) occurring in a word w is a factor uvu (respectively, \\(u^Rvu\\)) of w. We show how to compute efficiently, for every position i of the word w, the longest prefix u of w[i..n] such that uv (respectively, \\(u^Rv\\)) is a suffix of \\(w[1..i-1]\\) (defining thus a gapped repeat uvu – respectively, palindrome \\(u^Rvu\\)), and the length of v is subject to various types of restrictions.","PeriodicalId":55175,"journal":{"name":"Discrete Mathematics and Theoretical Computer Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Theoretical Computer Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.23638/DMTCS-19-4-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

A gapped repeat (respectively, palindrome) occurring in a word w is a factor uvu (respectively, \(u^Rvu\)) of w. We show how to compute efficiently, for every position i of the word w, the longest prefix u of w[i..n] such that uv (respectively, \(u^Rv\)) is a suffix of \(w[1..i-1]\) (defining thus a gapped repeat uvu – respectively, palindrome \(u^Rvu\)), and the length of v is subject to various types of restrictions.
最长间隔重复和回文
单词w中出现的间隔重复(分别为回文)是w的一个因子uvu(分别为\(u^Rvu\))。我们展示了如何有效地计算,对于单词w的每个位置i, w的最长前缀u [i..]N]使得uv(分别为\(u^Rv\))是\(w[1..i-1]\)的后缀(因此定义了一个间隔的重复uvu -分别为回文\(u^Rvu\)),并且v的长度受到各种类型的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
14.30%
发文量
39
期刊介绍: DMTCS is a open access scientic journal that is online since 1998. We are member of the Free Journal Network. Sections of DMTCS Analysis of Algorithms Automata, Logic and Semantics Combinatorics Discrete Algorithms Distributed Computing and Networking Graph Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信