Fast Two-Scale Analysis via Clustering

Chongxi Yuan, Xingchen Liu
{"title":"Fast Two-Scale Analysis via Clustering","authors":"Chongxi Yuan, Xingchen Liu","doi":"10.1115/detc2021-68633","DOIUrl":null,"url":null,"abstract":"\n Both man-made and natural materials exhibit heterogeneous properties at smaller observation scales. The multiscale analysis allows the inclusion of fine-scale information in coarse-scale simulations. One of the commonly used methods is homogenization, replacing the detailed fine-scale structures with their locally homogeneous effective material properties. When fine-scale material structures are stationary, representative volume elements (RVE) are often identified for their effective material properties to be applied over the entire structure. However, in non-stationary material structures, it is inappropriate to assume a single representative material. In this case, homogenization is often required for every individual cell, resulting in significant increases in computational cost.\n We propose a stiffness-based clustering algorithm that reduces the total number of homogenization computations needed for multiscale analysis. Cells with similar effective stiffness tensors are clustered together such that only a single homogenization is required for each cluster. Specifically, the clustering algorithm is based on the novel concept of Eigenstiffness, which represents the relative directional stiffness of a given material structure. The rotation invariant property of Eigenstiffness allows material structure with similar intrinsic stiffness but different orientations to be clustered together, further decreasing the number of clusters required for the multiscale analysis. Without a priori knowledge of the accurate homogenized material properties, approximated elasticity tensors and Eigenstiffness estimated through FFT-based homogenization methods are used for rapid clustering. The effectiveness of the method is verified by numerical simulations on various multiscale structures, including Voronoi foams and fiber-reinforced composites.","PeriodicalId":23602,"journal":{"name":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-68633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Both man-made and natural materials exhibit heterogeneous properties at smaller observation scales. The multiscale analysis allows the inclusion of fine-scale information in coarse-scale simulations. One of the commonly used methods is homogenization, replacing the detailed fine-scale structures with their locally homogeneous effective material properties. When fine-scale material structures are stationary, representative volume elements (RVE) are often identified for their effective material properties to be applied over the entire structure. However, in non-stationary material structures, it is inappropriate to assume a single representative material. In this case, homogenization is often required for every individual cell, resulting in significant increases in computational cost. We propose a stiffness-based clustering algorithm that reduces the total number of homogenization computations needed for multiscale analysis. Cells with similar effective stiffness tensors are clustered together such that only a single homogenization is required for each cluster. Specifically, the clustering algorithm is based on the novel concept of Eigenstiffness, which represents the relative directional stiffness of a given material structure. The rotation invariant property of Eigenstiffness allows material structure with similar intrinsic stiffness but different orientations to be clustered together, further decreasing the number of clusters required for the multiscale analysis. Without a priori knowledge of the accurate homogenized material properties, approximated elasticity tensors and Eigenstiffness estimated through FFT-based homogenization methods are used for rapid clustering. The effectiveness of the method is verified by numerical simulations on various multiscale structures, including Voronoi foams and fiber-reinforced composites.
基于聚类的快速双尺度分析
人造材料和天然材料在较小的观测尺度上都表现出非均质性。多尺度分析允许在粗尺度模拟中包含精细尺度信息。其中一种常用的方法是均质化,用局部均质的有效材料性质取代精细的精细结构。当精细尺度的材料结构是固定的,代表性体积元(RVE)通常被识别为适用于整个结构的有效材料特性。然而,在非固定的材料结构中,假设单一的代表性材料是不合适的。在这种情况下,通常需要对每个单独的细胞进行均质化,从而导致计算成本的显著增加。我们提出了一种基于刚度的聚类算法,该算法减少了多尺度分析所需的均匀化计算总数。具有相似有效刚度张量的细胞聚在一起,这样每个簇只需要一次均匀化。具体来说,聚类算法基于特征刚度的新概念,特征刚度表示给定材料结构的相对方向刚度。本征刚度的旋转不变性使得具有相似本征刚度但方向不同的材料结构可以聚在一起,进一步减少了多尺度分析所需的聚类数量。在没有准确均质材料特性先验知识的情况下,通过基于fft的均质方法估计的近似弹性张量和特征刚度用于快速聚类。通过对Voronoi泡沫和纤维增强复合材料等多尺度结构的数值模拟,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信