Synchronization of excitation waves in a two-layer network of FitzHugh–Nagumo neurons with noise modulation of interlayer coupling parameters

IF 0.5 Q4 PHYSICS, MULTIDISCIPLINARY
I. Ramazanov, I. Korneev, A. Slepnev, T. Vadivasova
{"title":"Synchronization of excitation waves in a two-layer network of FitzHugh–Nagumo neurons with noise modulation of interlayer coupling parameters","authors":"I. Ramazanov, I. Korneev, A. Slepnev, T. Vadivasova","doi":"10.18500/0869-6632-003016","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to study the possibility of synchronization of wave processes in distributed excitable systems by means of noise modulation of the coupling strength between them. Methods. A simple model of a neural network, which consists of two coupled layers of excitable FitzHugh–Nagumo oscillators with a ring topology, is studied by numerical simulation methods. The connection between the layers has a random component, which is set for each pair of coupled oscillators by independent sources of colored Gaussian noise. Results. The possibility to obtain a regime close to full (in-phase) synchronization of traveling waves in the case of identical interacting layers and a regime of synchronization of wave propagation velocities in the case of non-identical layers differing in the values of the coefficients of intra-layer coupling is shown for certain values of parameters of coupling noise (intensity and correlation time). Conclusion. It is shown that the effects of synchronization of phases and propagation velocities of excitation waves in ensembles of neurons can be controlled using random processes of interaction of excitable oscillators set by statistically independent noise sources. In this case, both the noise intensity and its correlation time can serve as control parameters. The results obtained on a simple model can be quite general.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"88 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-003016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this work is to study the possibility of synchronization of wave processes in distributed excitable systems by means of noise modulation of the coupling strength between them. Methods. A simple model of a neural network, which consists of two coupled layers of excitable FitzHugh–Nagumo oscillators with a ring topology, is studied by numerical simulation methods. The connection between the layers has a random component, which is set for each pair of coupled oscillators by independent sources of colored Gaussian noise. Results. The possibility to obtain a regime close to full (in-phase) synchronization of traveling waves in the case of identical interacting layers and a regime of synchronization of wave propagation velocities in the case of non-identical layers differing in the values of the coefficients of intra-layer coupling is shown for certain values of parameters of coupling noise (intensity and correlation time). Conclusion. It is shown that the effects of synchronization of phases and propagation velocities of excitation waves in ensembles of neurons can be controlled using random processes of interaction of excitable oscillators set by statistically independent noise sources. In this case, both the noise intensity and its correlation time can serve as control parameters. The results obtained on a simple model can be quite general.
基于层间耦合参数噪声调制的FitzHugh-Nagumo神经元两层网络激励波同步
本工作的目的是研究在分布式可激系统中,通过噪声调制它们之间的耦合强度来实现波过程同步的可能性。方法。用数值模拟方法研究了由两层环状可激FitzHugh-Nagumo振子组成的简单神经网络模型。层之间的连接具有随机分量,该分量由独立的彩色高斯噪声源设置为每对耦合振荡器。结果。对于耦合噪声参数(强度和相关时间)的某些值,表明在相同相互作用层的情况下,获得接近行波完全(同相)同步的状态的可能性,以及在层内耦合系数值不同的非相同层的情况下获得波传播速度同步的状态。结论。研究表明,神经元群中激励波的相位同步和传播速度的影响可以通过统计独立噪声源设置的可激励振子相互作用的随机过程来控制。在这种情况下,噪声强度和相关时间都可以作为控制参数。在一个简单的模型上得到的结果是相当普遍的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
47
期刊介绍: Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信