Comparison of stratified-algebraic and topological K-theory

IF 0.4 Q4 MATHEMATICS
W. Kucharz, K. Kurdyka
{"title":"Comparison of stratified-algebraic and topological K-theory","authors":"W. Kucharz, K. Kurdyka","doi":"10.5427/jsing.2020.22t","DOIUrl":null,"url":null,"abstract":"Stratied-algebra ic vector bundles on real algebraic varieties have many desirable features of algebraic vector bundles but are more exible. We give a characterization of the compact real algebraic varieties X having the following property: There exists a positive integer r such that for any topological vector bundle on X, the direct sum of r copies of is isomorphic to a stratied- algebraic vector bundle. In particular, each compact real algebraic variety of dimension at most 8 has this property. Our results are expressed in terms of K-theory.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2015-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2020.22t","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Stratied-algebra ic vector bundles on real algebraic varieties have many desirable features of algebraic vector bundles but are more exible. We give a characterization of the compact real algebraic varieties X having the following property: There exists a positive integer r such that for any topological vector bundle on X, the direct sum of r copies of is isomorphic to a stratied- algebraic vector bundle. In particular, each compact real algebraic variety of dimension at most 8 has this property. Our results are expressed in terms of K-theory.
分层代数k理论与拓扑k理论之比较
实代数变体上的层代数向量束具有代数向量束的许多特性,但具有更强的灵活性。给出紧实代数变体X具有以下性质的一个刻划:存在一个正整数r,使得对于X上的任意拓扑向量束,其r个副本的直和同构于一个分层代数向量束。特别地,每一个不超过8维的紧实代数变型都具有这个性质。我们的结果是用k理论表示的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信