Jianyun Yu , Feng Lin , Shengheng Lin , Xiaolin Pei , Jiang Miao , Xinxin Chen , Stephen Gang Wu , Anming Wang
{"title":"A comparative study of papain and bromelain in enzymatic oligomerization of l-Phe methyl ester in aqueous environment","authors":"Jianyun Yu , Feng Lin , Shengheng Lin , Xiaolin Pei , Jiang Miao , Xinxin Chen , Stephen Gang Wu , Anming Wang","doi":"10.1016/j.molcatb.2016.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we developed an efficient approach for hydrophobic amino acids polymerization in aqueous solution. We compared the catalysis efficiency of papain and bromelain in catalyzing <span>l</span>-phenylalanine methyl ester (<span>l</span>-Phe-Me) for oligomer peptides synthesis. A set of reaction conditions (such as protease type, reaction temperature, time, and pH) have been tested for the polymerization reaction with papain and bromelain, respectively. Moreover, the resultant oligomers were analyzed through <sup>1</sup>HNMR and MALDI-TOF. The results indicated that the average degree of polymerization (DP) reached the highest value (6.74) when papain was used for <span>l</span>-Phe-Me polymerization in phosphate buffer (0.2<!--> <!-->M, pH 8) at 40<!--> <!-->°C for three hours. At 50<!--> <!-->°C, the DP reached 6.62 with a yield of 72.9% when papain as the catalyst. Its yield and DP were 4.50 and 1.27 folds higher than those of the oligo- peptides synthesized by bromelain. Moreover, we found the DP and the yield of oligo(<span>l</span>-Phe) can be enhanced with higher reaction temperature and longer reaction time. In summary, papain presents better catalytic properties compared with bromelain for <span>l</span>-Phe polymerization in terms of DP and yield. Oligomerization catalyzed by papain at high temperature presents a potent procedure for the synthesis of biologically active oligo(<span>l</span>-Phe) peptides.</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"133 ","pages":"Pages S95-S99"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.12.001","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117716302752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 7
Abstract
In this study, we developed an efficient approach for hydrophobic amino acids polymerization in aqueous solution. We compared the catalysis efficiency of papain and bromelain in catalyzing l-phenylalanine methyl ester (l-Phe-Me) for oligomer peptides synthesis. A set of reaction conditions (such as protease type, reaction temperature, time, and pH) have been tested for the polymerization reaction with papain and bromelain, respectively. Moreover, the resultant oligomers were analyzed through 1HNMR and MALDI-TOF. The results indicated that the average degree of polymerization (DP) reached the highest value (6.74) when papain was used for l-Phe-Me polymerization in phosphate buffer (0.2 M, pH 8) at 40 °C for three hours. At 50 °C, the DP reached 6.62 with a yield of 72.9% when papain as the catalyst. Its yield and DP were 4.50 and 1.27 folds higher than those of the oligo- peptides synthesized by bromelain. Moreover, we found the DP and the yield of oligo(l-Phe) can be enhanced with higher reaction temperature and longer reaction time. In summary, papain presents better catalytic properties compared with bromelain for l-Phe polymerization in terms of DP and yield. Oligomerization catalyzed by papain at high temperature presents a potent procedure for the synthesis of biologically active oligo(l-Phe) peptides.
期刊介绍:
Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation.
Papers should report novel and significant advances in one or more of the following topics;
Applied and fundamental studies of enzymes used for biocatalysis;
Industrial applications of enzymatic processes, e.g. in fine chemical synthesis;
Chemo-, regio- and enantioselective transformations;
Screening for biocatalysts;
Integration of biocatalytic and chemical steps in organic syntheses;
Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies;
Enzyme immobilization and stabilization, particularly in non-conventional media;
Bioprocess engineering aspects, e.g. membrane bioreactors;
Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification;
Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity;
Biomimetic studies related to enzymatic transformations.