An improved multilayer self-organizing background subtraction algorithm for microorganism detection in sewage

Fang Zhou, Jun Liu, Bing Wang, Peizhen Wang
{"title":"An improved multilayer self-organizing background subtraction algorithm for microorganism detection in sewage","authors":"Fang Zhou, Jun Liu, Bing Wang, Peizhen Wang","doi":"10.1109/ICCE-TW.2016.7520923","DOIUrl":null,"url":null,"abstract":"In this paper, a new image sequence model, obtained by learning in a multilayer self-organizing neural network, is proposed for moving microorganism detection in sewage treatment system. The model is able to handle diverse challenging scenarios accurately, such as dynamic background, gradual illumination variations, shadows cast and so on, which are robust against false detections for different types of micro-videos. Experimental results demonstrate its effectiveness compared with other state-of-the-art methods.","PeriodicalId":6620,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"18 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2016.7520923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new image sequence model, obtained by learning in a multilayer self-organizing neural network, is proposed for moving microorganism detection in sewage treatment system. The model is able to handle diverse challenging scenarios accurately, such as dynamic background, gradual illumination variations, shadows cast and so on, which are robust against false detections for different types of micro-videos. Experimental results demonstrate its effectiveness compared with other state-of-the-art methods.
污水中微生物检测的改进多层自组织背景相减算法
针对污水处理系统中移动微生物的检测问题,提出了一种通过多层自组织神经网络学习得到的图像序列模型。该模型能够准确地处理各种具有挑战性的场景,如动态背景、渐变照明变化、阴影投射等,对不同类型的微视频具有抗误检的鲁棒性。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信