Supercritical water gasification of waste oils as a source of syngas

Q3 Chemical Engineering
F. Grisafi, P. Iannotta, G. Caputo, Marco Maniscalco, A. Brucato, F. Scargiali
{"title":"Supercritical water gasification of waste oils as a source of syngas","authors":"F. Grisafi, P. Iannotta, G. Caputo, Marco Maniscalco, A. Brucato, F. Scargiali","doi":"10.3303/CET2186023","DOIUrl":null,"url":null,"abstract":"A huge amount of waste oil is produced worldwide. Also substantial amount of virgin oils is available that are interesting candidates for upgrading into syngas. Supercritical water gasification (SCWG) can be considered as an aqueous phase reforming process to produce syngas from oils. In this work, a variety of waste and virgin oils were gasified in a continuous down-flow autoclave reactor at supercritical conditions. Experiments were carried out at 430 °C and 660 °C, 25 MPa, with a residence time in the range 103-170 s, in order to investigate gasification and carbon efficiency, hydrogen yield and composition of the produced gas. All the analysed feedstocks were suspended in water at various concentrations before gasification. Pyrolysis bio-oil showed a gasification efficiency of 74 % and 86 % for mixtures with 3 and 10 oil/water wt ratio, respectively. Waste motor oil, suspended in water at a concentration of 1 % wt thanks to the use of surfactants, was successfully gasified with a gasification efficiency of 73 %. Virgin motor oil gasification efficiency higher than 60% had been obtained for both analysed concentrations (5 % wt and 10 % wt of oil). Gasification of rapeseed oil at 5 % wt showed a gasification efficiency close to 88 %. On the contrary, the gasification of sunflower oil at 430 °C showed that this temperature is not high enough to obtain acceptable gasification efficiencies that varied from 20 % to 15 % for concentrations of oil from 2 % wt to 8 % wt, respectively. The analysis of the gas composition, in all the studied cases, showed that the obtained gas stream was rich in H2, CH4 and CO2, with variable quantities of light hydrocarbons (C2H4, C2H6 and C3H8).","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"74 1","pages":"133-138"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2186023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

A huge amount of waste oil is produced worldwide. Also substantial amount of virgin oils is available that are interesting candidates for upgrading into syngas. Supercritical water gasification (SCWG) can be considered as an aqueous phase reforming process to produce syngas from oils. In this work, a variety of waste and virgin oils were gasified in a continuous down-flow autoclave reactor at supercritical conditions. Experiments were carried out at 430 °C and 660 °C, 25 MPa, with a residence time in the range 103-170 s, in order to investigate gasification and carbon efficiency, hydrogen yield and composition of the produced gas. All the analysed feedstocks were suspended in water at various concentrations before gasification. Pyrolysis bio-oil showed a gasification efficiency of 74 % and 86 % for mixtures with 3 and 10 oil/water wt ratio, respectively. Waste motor oil, suspended in water at a concentration of 1 % wt thanks to the use of surfactants, was successfully gasified with a gasification efficiency of 73 %. Virgin motor oil gasification efficiency higher than 60% had been obtained for both analysed concentrations (5 % wt and 10 % wt of oil). Gasification of rapeseed oil at 5 % wt showed a gasification efficiency close to 88 %. On the contrary, the gasification of sunflower oil at 430 °C showed that this temperature is not high enough to obtain acceptable gasification efficiencies that varied from 20 % to 15 % for concentrations of oil from 2 % wt to 8 % wt, respectively. The analysis of the gas composition, in all the studied cases, showed that the obtained gas stream was rich in H2, CH4 and CO2, with variable quantities of light hydrocarbons (C2H4, C2H6 and C3H8).
超临界水气化废油作为合成气的来源
世界范围内产生了大量的废油。此外,大量的初榨油是升级为合成气的有趣候选者。超临界水气化(SCWG)是一种以油为原料生产合成气的水相重整工艺。在超临界条件下,在连续下流式热压釜反应器中对多种废油和初榨油进行了气化研究。在430°C和660°C、25 MPa、103 ~ 170 s的停留时间下进行了实验,以研究气化和碳效率、产氢率和产气成分。所有分析的原料在气化前以不同浓度悬浮在水中。当油水比为3和10时,热解生物油的气化效率分别为74%和86%。由于使用了表面活性剂,废机油以1% wt的浓度悬浮在水中,气化效率为73%。在两种分析浓度(5% wt和10% wt的油)下,Virgin机油的气化效率均高于60%。以5%重量的菜籽油气化,气化效率接近88%。相反,在430°C下向日葵油的气化表明,这个温度不足以获得可接受的气化效率,在2% wt到8% wt的油浓度下,气化效率分别在20%到15%之间变化。气体组成分析表明,在所有研究案例中,获得的气流富含H2、CH4和CO2,并含有不同数量的轻烃(C2H4、C2H6和C3H8)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical engineering transactions
Chemical engineering transactions Chemical Engineering-Chemical Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊介绍: Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信