Performance experiment of all fresh air-handling unit with high sub-cooling degree and year-round exergy analysis

Zhongbin Zhang, Ya-Ping Pan, Hu Huang, Qing Jiang
{"title":"Performance experiment of all fresh air-handling unit with high sub-cooling degree and year-round exergy analysis","authors":"Zhongbin Zhang, Ya-Ping Pan, Hu Huang, Qing Jiang","doi":"10.1080/10789669.2014.939059","DOIUrl":null,"url":null,"abstract":"In this article, an all fresh air-handling unit with high sub-cooling degree is presented. In this unit, refrigerant flows through the high-pressure liquid receiver before it goes through the sub-cooler so as to ensure sufficient sub-cooling degree. Based on the experimental comparison between this unit and conventional unit, coupling relationships between condensing temperatures and sub-cooling degrees of these two units are worked out and analyzed. Experimental results and exergy analysis show that, sub-cooling degree drops with the decrease of condensing temperature, and sub-cooling degree of the designed unit is kept over 7°C when the sub-cooling degree of the conventional unit is only close to 0°C. Furthermore, a method of year-round exergy calculation is presented and applied in calculating and analyzing the year-round exergy of the all fresh air-handling unit. Calculation and analysis show that the all fresh air-handling unit designed and investigated in this article has a year-round exergy efficiency of 28.38%, which is 3.17% higher than that of the conventional unit without high sub-cooling degree.","PeriodicalId":13238,"journal":{"name":"HVAC&R Research","volume":"262 1","pages":"810 - 818"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HVAC&R Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10789669.2014.939059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this article, an all fresh air-handling unit with high sub-cooling degree is presented. In this unit, refrigerant flows through the high-pressure liquid receiver before it goes through the sub-cooler so as to ensure sufficient sub-cooling degree. Based on the experimental comparison between this unit and conventional unit, coupling relationships between condensing temperatures and sub-cooling degrees of these two units are worked out and analyzed. Experimental results and exergy analysis show that, sub-cooling degree drops with the decrease of condensing temperature, and sub-cooling degree of the designed unit is kept over 7°C when the sub-cooling degree of the conventional unit is only close to 0°C. Furthermore, a method of year-round exergy calculation is presented and applied in calculating and analyzing the year-round exergy of the all fresh air-handling unit. Calculation and analysis show that the all fresh air-handling unit designed and investigated in this article has a year-round exergy efficiency of 28.38%, which is 3.17% higher than that of the conventional unit without high sub-cooling degree.
高过冷度全新风处理机组性能试验及全年火用分析
介绍了一种高过冷度的全新风处理机组。在本机组中,制冷剂先经过高压液接收器,再经过过冷器,以保证足够的过冷度。通过与常规机组的实验比较,得出并分析了两机组冷凝温度与过冷度的耦合关系。实验结果和火用分析表明,冷凝温度越低,过冷度越低,当常规机组的过冷度仅接近0℃时,设计机组的过冷度保持在7℃以上。提出了全年火用计算方法,并应用于全新风处理机组全年火用的计算和分析。计算分析表明,本文设计考察的全新风处理机组全年火用效率为28.38%,比无高过冷度的常规机组高出3.17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
HVAC&R Research
HVAC&R Research 工程技术-工程:机械
自引率
0.00%
发文量
0
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信