A. Darin, G. Chu, Q. Sun, V. Babich, I. Kalugin, T. Markovich, V. S. Novikov, F. Darin, Y. Rakshun
{"title":"Archive data on climate changes and seismic events in glacial clays of Lake Kucherla (Altai region, Russia)","authors":"A. Darin, G. Chu, Q. Sun, V. Babich, I. Kalugin, T. Markovich, V. S. Novikov, F. Darin, Y. Rakshun","doi":"10.5800/gt-2020-11-3-0495","DOIUrl":null,"url":null,"abstract":". Core samples taken from the bottom sediments of the glacial Lake Kucherla (Gorny Altai, Russia) clearly show annual layers represented by glacial clays. In our study, age-depth modeling is based the varve chronology and Cs-137, Pb-210 and C-14 isotope data. Our model is a highly accurate and reliable demonstration of the annual sedimentation history within the past 1400 years. The time series of geochemical indicators of climate change were obtained by synchrotron radiation micro X-ray fluorescence (SR-µXRF) core scanning. Instrumental meteorological observations from 1940 to 2016 were used to construct transfer functions for the average annual temperatures and atmospheric precipitation amounts. A geochemical trace of a catastrophic seismic event, the Mongolian earthquake of 1761, was found in the cross-section of the bottom sediments.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5800/gt-2020-11-3-0495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
. Core samples taken from the bottom sediments of the glacial Lake Kucherla (Gorny Altai, Russia) clearly show annual layers represented by glacial clays. In our study, age-depth modeling is based the varve chronology and Cs-137, Pb-210 and C-14 isotope data. Our model is a highly accurate and reliable demonstration of the annual sedimentation history within the past 1400 years. The time series of geochemical indicators of climate change were obtained by synchrotron radiation micro X-ray fluorescence (SR-µXRF) core scanning. Instrumental meteorological observations from 1940 to 2016 were used to construct transfer functions for the average annual temperatures and atmospheric precipitation amounts. A geochemical trace of a catastrophic seismic event, the Mongolian earthquake of 1761, was found in the cross-section of the bottom sediments.