Reinforcement Learning Control for Consensus of the Leader-Follower Multi-Agent Systems

M. Chiang, An-Sheng Liu, L. Fu
{"title":"Reinforcement Learning Control for Consensus of the Leader-Follower Multi-Agent Systems","authors":"M. Chiang, An-Sheng Liu, L. Fu","doi":"10.1109/DDCLS.2018.8516035","DOIUrl":null,"url":null,"abstract":"This paper considers the optimal consensus of multi-agent systems using reinforcement learning control. The system is nonlinear and the number of agents can be large. The control objective is to design the controllers for each agent such that all the agents will be consensus to the leader agent. We use the Actor-Critic Network and the Deterministic Policy Gradient method to realize the controller. The policy iteration algorithm is discussed and many simulations are provided to validate the result.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"20 1","pages":"1152-1157"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8516035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the optimal consensus of multi-agent systems using reinforcement learning control. The system is nonlinear and the number of agents can be large. The control objective is to design the controllers for each agent such that all the agents will be consensus to the leader agent. We use the Actor-Critic Network and the Deterministic Policy Gradient method to realize the controller. The policy iteration algorithm is discussed and many simulations are provided to validate the result.
领导-随从多智能体系统共识的强化学习控制
本文利用强化学习控制研究了多智能体系统的最优一致性问题。该系统是非线性的,agent的数量可能很大。控制目标是为每个代理设计控制器,使所有代理都与领导代理达成共识。我们使用行动者-评论家网络和确定性策略梯度方法来实现控制器。讨论了策略迭代算法,并进行了仿真验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信