Frederik Harwath, Lucas Heimberg, Nicole Schweikardt
{"title":"Preservation and decomposition theorems for bounded degree structures","authors":"Frederik Harwath, Lucas Heimberg, Nicole Schweikardt","doi":"10.1145/2603088.2603130","DOIUrl":null,"url":null,"abstract":"We provide elementary algorithms for two preservation theorems for first-order sentences with modulo m counting quantifiers (FO+MODm) on the class Cd of all finite structures of degree at most d: For each FO+MODm-sentence that is preserved under extensions (homomorphisms) on Cd, a Cd-equivalent existential (existential-positive) FO-sentence can be constructed in 6-fold (4-fold) exponential time. For FO-sentences, the algorithm has 5-fold (4-fold) exponential time complexity. This is complemented by lower bounds showing that for FO-sentences a 3-fold exponential blow-up of the computed existential (existential-positive) sentence is unavoidable. Furthermore, we show that for an input FO-formula, a Cd-equivalent Feferman-Vaught decomposition can be computed in 3-fold exponential time. We also provide a matching lower bound.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
We provide elementary algorithms for two preservation theorems for first-order sentences with modulo m counting quantifiers (FO+MODm) on the class Cd of all finite structures of degree at most d: For each FO+MODm-sentence that is preserved under extensions (homomorphisms) on Cd, a Cd-equivalent existential (existential-positive) FO-sentence can be constructed in 6-fold (4-fold) exponential time. For FO-sentences, the algorithm has 5-fold (4-fold) exponential time complexity. This is complemented by lower bounds showing that for FO-sentences a 3-fold exponential blow-up of the computed existential (existential-positive) sentence is unavoidable. Furthermore, we show that for an input FO-formula, a Cd-equivalent Feferman-Vaught decomposition can be computed in 3-fold exponential time. We also provide a matching lower bound.