Preservation and decomposition theorems for bounded degree structures

Frederik Harwath, Lucas Heimberg, Nicole Schweikardt
{"title":"Preservation and decomposition theorems for bounded degree structures","authors":"Frederik Harwath, Lucas Heimberg, Nicole Schweikardt","doi":"10.1145/2603088.2603130","DOIUrl":null,"url":null,"abstract":"We provide elementary algorithms for two preservation theorems for first-order sentences with modulo m counting quantifiers (FO+MODm) on the class Cd of all finite structures of degree at most d: For each FO+MODm-sentence that is preserved under extensions (homomorphisms) on Cd, a Cd-equivalent existential (existential-positive) FO-sentence can be constructed in 6-fold (4-fold) exponential time. For FO-sentences, the algorithm has 5-fold (4-fold) exponential time complexity. This is complemented by lower bounds showing that for FO-sentences a 3-fold exponential blow-up of the computed existential (existential-positive) sentence is unavoidable. Furthermore, we show that for an input FO-formula, a Cd-equivalent Feferman-Vaught decomposition can be computed in 3-fold exponential time. We also provide a matching lower bound.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We provide elementary algorithms for two preservation theorems for first-order sentences with modulo m counting quantifiers (FO+MODm) on the class Cd of all finite structures of degree at most d: For each FO+MODm-sentence that is preserved under extensions (homomorphisms) on Cd, a Cd-equivalent existential (existential-positive) FO-sentence can be constructed in 6-fold (4-fold) exponential time. For FO-sentences, the algorithm has 5-fold (4-fold) exponential time complexity. This is complemented by lower bounds showing that for FO-sentences a 3-fold exponential blow-up of the computed existential (existential-positive) sentence is unavoidable. Furthermore, we show that for an input FO-formula, a Cd-equivalent Feferman-Vaught decomposition can be computed in 3-fold exponential time. We also provide a matching lower bound.
有界度结构的保存与分解定理
我们提供了两个保留定理的初等算法,这些定理适用于所有次不超过d的有限结构的Cd类上具有模m计数量词的一阶句(FO+MODm):对于每个在Cd上的扩展(同态)下保留的FO+MODm-句,可以在6倍(4倍)指数时间内构造一个Cd-等价的存在(存在-正)FO-句。对于o句,该算法具有5倍(4倍)指数时间复杂度。这是下界的补充,表明对于o句,计算存在(存在-肯定)句的3倍指数膨胀是不可避免的。此外,我们证明了对于一个输入fo公式,一个等效cd的Feferman-Vaught分解可以在3倍指数时间内计算出来。我们还提供了一个匹配的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信