{"title":"Two-Stage Multicriteria Decision-Making Framework for Aircraft Conflict Resolution","authors":"Youkyung Hong, Youdan Kim","doi":"10.2514/1.i011152","DOIUrl":null,"url":null,"abstract":"In this study, a two-stage multicriteria decision-making framework for aircraft conflict resolution in the air traffic management system is proposed. Aircraft conflict resolution has been commonly solved based on single-objective optimization. However, the existing approach may not provide a satisfactory solution to all stakeholders involved in the air traffic management system. Therefore, in the first stage of the proposed algorithm, a new conflict resolution strategy is presented based on multiobjective optimization in which multiple-objective functions are optimized simultaneously. Each objective function is designed to take into account the interests of various stakeholders, and the augmented epsilon-constraint method is applied to determine Pareto optimal solutions. In the second stage, the best compromise solution among the Pareto optimal solutions is determined based on the technique for order performance by similarity to the ideal solution. The numerical simulation results show that the proposed algorithm provides a better solution from the perspective of mitigating the competing interests among stakeholders than the existing approach based on single-objective optimization.","PeriodicalId":50260,"journal":{"name":"Journal of Aerospace Information Systems","volume":"374 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Information Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.i011152","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a two-stage multicriteria decision-making framework for aircraft conflict resolution in the air traffic management system is proposed. Aircraft conflict resolution has been commonly solved based on single-objective optimization. However, the existing approach may not provide a satisfactory solution to all stakeholders involved in the air traffic management system. Therefore, in the first stage of the proposed algorithm, a new conflict resolution strategy is presented based on multiobjective optimization in which multiple-objective functions are optimized simultaneously. Each objective function is designed to take into account the interests of various stakeholders, and the augmented epsilon-constraint method is applied to determine Pareto optimal solutions. In the second stage, the best compromise solution among the Pareto optimal solutions is determined based on the technique for order performance by similarity to the ideal solution. The numerical simulation results show that the proposed algorithm provides a better solution from the perspective of mitigating the competing interests among stakeholders than the existing approach based on single-objective optimization.
期刊介绍:
This Journal is devoted to the dissemination of original archival research papers describing new theoretical developments, novel applications, and case studies regarding advances in aerospace computing, information, and networks and communication systems that address aerospace-specific issues. Issues related to signal processing, electromagnetics, antenna theory, and the basic networking hardware transmission technologies of a network are not within the scope of this journal. Topics include aerospace systems and software engineering; verification and validation of embedded systems; the field known as ‘big data,’ data analytics, machine learning, and knowledge management for aerospace systems; human-automation interaction and systems health management for aerospace systems. Applications of autonomous systems, systems engineering principles, and safety and mission assurance are of particular interest. The Journal also features Technical Notes that discuss particular technical innovations or applications in the topics described above. Papers are also sought that rigorously review the results of recent research developments. In addition to original research papers and reviews, the journal publishes articles that review books, conferences, social media, and new educational modes applicable to the scope of the Journal.