{"title":"The Effects of Metallization of Busbars on the Performance of PV Cell","authors":"A. Qayoom, A. Qadir, Qasir Ali","doi":"10.18178/jocet.2019.7.1.501","DOIUrl":null,"url":null,"abstract":" Abstract —Photovoltaic (PV) technology is one of the upcoming leading technology to curb environmental issues without affecting sustainable development. However, its efficiency and cost are the significant issues in getting its peak in energy sector. In this paper we have numerically investigated the effects of metallization on the performance of PV cell. By using Griddler2.5 software various designs of H-pattern PV cells have been studied. It is revealed that increase in the number of busbars augments the shading factor from 4.11% to 8.75% and fill factor increases from 69.39% to 81.06%. Moreover, it is found that efficiency of PV cell increases when busbars value reaches to 4, then it decreases, it may be due to the influence of shading. Similarly, as the size of busbar increases so does the shading factor increase from 5.05% to 12.54% and fill factor from 80.29% to 80.49%. While in this case efficiency decreased from 19.91% to 18.17% throughout sizing range of busbar in the study. Hence it found that thin metallic busbars are more beneficial for PV cell performance and optimal number of busbars to be used in a PV cell is","PeriodicalId":15527,"journal":{"name":"Journal of Clean Energy Technologies","volume":"374 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clean Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/jocet.2019.7.1.501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract —Photovoltaic (PV) technology is one of the upcoming leading technology to curb environmental issues without affecting sustainable development. However, its efficiency and cost are the significant issues in getting its peak in energy sector. In this paper we have numerically investigated the effects of metallization on the performance of PV cell. By using Griddler2.5 software various designs of H-pattern PV cells have been studied. It is revealed that increase in the number of busbars augments the shading factor from 4.11% to 8.75% and fill factor increases from 69.39% to 81.06%. Moreover, it is found that efficiency of PV cell increases when busbars value reaches to 4, then it decreases, it may be due to the influence of shading. Similarly, as the size of busbar increases so does the shading factor increase from 5.05% to 12.54% and fill factor from 80.29% to 80.49%. While in this case efficiency decreased from 19.91% to 18.17% throughout sizing range of busbar in the study. Hence it found that thin metallic busbars are more beneficial for PV cell performance and optimal number of busbars to be used in a PV cell is