Multi-Attribute Regression Network for Face Reconstruction

Xiangzheng Li, Suping Wu
{"title":"Multi-Attribute Regression Network for Face Reconstruction","authors":"Xiangzheng Li, Suping Wu","doi":"10.1109/ICPR48806.2021.9412668","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a multi-attribute regression network (MARN) to investigate the problem of face reconstruction, especially in challenging cases when faces undergo large variations including severe poses, extreme expressions, and partial occlusions in unconstrained environments. The traditional 3DMM parametric regression method does not distinguish the learning of identity, expression, and attitude attributes, resulting in lacking geometric details in the reconstructed face. We propose to learn a face multi-attribute features during 3D face reconstruction from single 2D images. Our MARN enables the network to better extract the feature information of face identity, expression, and pose attributes. We introduce three loss functions to constrain the above three face attributes respectively. At the same time, we carefully design the geometric contour constraint loss function, using the constraints of sparse 2D face landmarks to improve the reconstructed geometric contour information. The experimental results show that our MARN has achieved significant improvements in 3D face reconstruction and face alignment on the AFLW2000-3D and AFLW datasets.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"463 1","pages":"7226-7233"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9412668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we propose a multi-attribute regression network (MARN) to investigate the problem of face reconstruction, especially in challenging cases when faces undergo large variations including severe poses, extreme expressions, and partial occlusions in unconstrained environments. The traditional 3DMM parametric regression method does not distinguish the learning of identity, expression, and attitude attributes, resulting in lacking geometric details in the reconstructed face. We propose to learn a face multi-attribute features during 3D face reconstruction from single 2D images. Our MARN enables the network to better extract the feature information of face identity, expression, and pose attributes. We introduce three loss functions to constrain the above three face attributes respectively. At the same time, we carefully design the geometric contour constraint loss function, using the constraints of sparse 2D face landmarks to improve the reconstructed geometric contour information. The experimental results show that our MARN has achieved significant improvements in 3D face reconstruction and face alignment on the AFLW2000-3D and AFLW datasets.
人脸重构的多属性回归网络
在本文中,我们提出了一种多属性回归网络(MARN)来研究人脸重建问题,特别是当人脸在无约束环境中经历严重姿势、极端表情和部分遮挡等大变化时的挑战情况。传统的3DMM参数回归方法没有区分身份、表情和态度属性的学习,导致重建的人脸缺乏几何细节。我们提出在三维人脸重建过程中,从单幅二维图像中学习人脸的多属性特征。我们的MARN使网络能够更好地提取人脸身份、表情和姿态属性的特征信息。我们分别引入三个损失函数来约束上述三个人脸属性。同时,我们精心设计几何轮廓约束损失函数,利用稀疏的二维人脸地标约束来改进重构的几何轮廓信息。实验结果表明,在AFLW2000-3D和AFLW数据集上,我们的MARN在三维人脸重建和人脸对齐方面取得了显著的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信