SEQ2SEQ VS SKETCH FILLING STRUCTURE FOR NATURAL LANGUAGE TO SQL TRANSLATION

K. Ahkouk, M. Machkour, K. Majhadi, R. Mama
{"title":"SEQ2SEQ VS SKETCH FILLING STRUCTURE FOR NATURAL LANGUAGE TO SQL TRANSLATION","authors":"K. Ahkouk, M. Machkour, K. Majhadi, R. Mama","doi":"10.5194/isprs-archives-xliv-4-w3-2020-7-2020","DOIUrl":null,"url":null,"abstract":"Abstract. Sequence to sequence models have been widely used in the recent years in the different tasks of Natural Language processing. In particular, the concept has been deeply adopted to treat the problem of translating human language questions to SQL. In this context, many studies suggest the use of sequence to sequence approaches for predicting the target SQL queries using the different available datasets. In this paper, we put the light on another way to resolve natural language processing tasks, especially the Natural Language to SQL one using the method of sketch-based decoding which is based on a sketch with holes that the model incrementally tries to fill. We present the pros and cons of each approach and how a sketch-based model can outperform the already existing solutions in order to predict the wanted SQL queries and to generate to unseen input pairs in different contexts and cross-domain datasets, and finally we discuss the test results of the already proposed models using the exact matching scores and the errors propagation and the time required for the training as metrics.","PeriodicalId":14757,"journal":{"name":"ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":"126 1","pages":"7-11"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xliv-4-w3-2020-7-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract. Sequence to sequence models have been widely used in the recent years in the different tasks of Natural Language processing. In particular, the concept has been deeply adopted to treat the problem of translating human language questions to SQL. In this context, many studies suggest the use of sequence to sequence approaches for predicting the target SQL queries using the different available datasets. In this paper, we put the light on another way to resolve natural language processing tasks, especially the Natural Language to SQL one using the method of sketch-based decoding which is based on a sketch with holes that the model incrementally tries to fill. We present the pros and cons of each approach and how a sketch-based model can outperform the already existing solutions in order to predict the wanted SQL queries and to generate to unseen input pairs in different contexts and cross-domain datasets, and finally we discuss the test results of the already proposed models using the exact matching scores and the errors propagation and the time required for the training as metrics.
Seq2seq与自然语言到SQL转换的草图填充结构
摘要序列到序列模型近年来在自然语言处理的不同任务中得到了广泛的应用。特别是,这个概念已经被深入地用于处理将人类语言问题翻译成SQL的问题。在这种情况下,许多研究建议使用序列到序列方法来使用不同的可用数据集预测目标SQL查询。在本文中,我们提出了另一种解决自然语言处理任务的方法,特别是使用基于草图的解码方法来解决自然语言到SQL的处理任务,该方法基于带有漏洞的草图,模型逐渐尝试填充这些漏洞。我们介绍了每种方法的优点和缺点,以及基于草图的模型如何优于现有的解决方案,以便预测所需的SQL查询,并在不同的上下文中和跨域数据集中生成未见过的输入对,最后我们讨论了使用精确匹配分数和错误传播以及训练所需时间作为度量的已经提出的模型的测试结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信