Recurrent Neural Network With Gate Recurrent Unit For Stock Price Prediction

Afif Ilham Caniago, Wilis Kaswidjanti, Juwairiah Juwairiah
{"title":"Recurrent Neural Network With Gate Recurrent Unit For Stock Price Prediction","authors":"Afif Ilham Caniago, Wilis Kaswidjanti, Juwairiah Juwairiah","doi":"10.31315/telematika.v18i3.6650","DOIUrl":null,"url":null,"abstract":"Stock price prediction is a solution to reduce the risk of loss from investing in stocks go public. Although stock prices can be analyzed by stock experts, this analysis is analytical bias. Recurrent Neural Network (RNN) is a machine learning algorithm that can predict a time series data, non-linear data and non-stationary. However, RNNs have a vanishing gradient problem when dealing with long memory dependencies. The Gate Recurrent Unit (GRU) has the ability to handle long memory dependency data. In this study, researchers will evaluate the parameters of the RNN-GRU architecture that affect predictions with MAE, RMSE, DA, and MAPE as benchmarks. The architectural parameters tested are the number of units/neurons, hidden layers (Shallow and Stacked) and input data (Chartist and TA). The best number of units/neurons is not the same in all predicted cases. The best architecture of RNN-GRU is Stacked. The best input data is TA. Stock price predictions with RNN-GRU have different performance depending on how far the model predicts and the company's liquidity. The error value in this study (MAE, RMSE, MAPE) constantly increases as the label range increases. In this study, there are six data on stock prices with different companies. Liquid companies have a lower error value than non-liquid companies.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31315/telematika.v18i3.6650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Stock price prediction is a solution to reduce the risk of loss from investing in stocks go public. Although stock prices can be analyzed by stock experts, this analysis is analytical bias. Recurrent Neural Network (RNN) is a machine learning algorithm that can predict a time series data, non-linear data and non-stationary. However, RNNs have a vanishing gradient problem when dealing with long memory dependencies. The Gate Recurrent Unit (GRU) has the ability to handle long memory dependency data. In this study, researchers will evaluate the parameters of the RNN-GRU architecture that affect predictions with MAE, RMSE, DA, and MAPE as benchmarks. The architectural parameters tested are the number of units/neurons, hidden layers (Shallow and Stacked) and input data (Chartist and TA). The best number of units/neurons is not the same in all predicted cases. The best architecture of RNN-GRU is Stacked. The best input data is TA. Stock price predictions with RNN-GRU have different performance depending on how far the model predicts and the company's liquidity. The error value in this study (MAE, RMSE, MAPE) constantly increases as the label range increases. In this study, there are six data on stock prices with different companies. Liquid companies have a lower error value than non-liquid companies.
带门递归单元的递归神经网络用于股票价格预测
股票价格预测是一种降低上市股票投资损失风险的方法。虽然股票专家可以分析股票价格,但这种分析是分析偏差。递归神经网络(RNN)是一种可以预测时间序列数据、非线性数据和非平稳数据的机器学习算法。然而,rnn在处理长内存依赖时存在梯度消失问题。栅极循环单元(GRU)具有处理长内存依赖数据的能力。在本研究中,研究人员将以MAE、RMSE、DA和MAPE为基准,评估影响预测的RNN-GRU架构参数。测试的架构参数是单元/神经元的数量,隐藏层(Shallow和Stacked)和输入数据(Chartist和TA)。在所有预测的情况下,最佳单位/神经元数量并不相同。RNN-GRU的最佳结构是堆叠结构。最好的输入数据是TA。基于RNN-GRU的股价预测会根据模型预测的距离和公司的流动性而有不同的表现。本研究中的误差值(MAE、RMSE、MAPE)随着标签范围的增大而不断增大。在本研究中,有六个不同公司的股票价格数据。流动性公司的误差值低于非流动性公司。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信