Quadrilateral cell graphs of the normalizer with signature (2,4,∞)

IF 0.4 4区 数学 Q4 MATHEMATICS
Nazlı Yazıcı Gözütok, B. Ö. Güler
{"title":"Quadrilateral cell graphs of the normalizer with signature (2,4,∞)","authors":"Nazlı Yazıcı Gözütok, B. Ö. Güler","doi":"10.1556/012.2020.57.3.1473","DOIUrl":null,"url":null,"abstract":"In this study, we investigate suborbital graphs Gu,n of the normalizer ΓB (N) of Γ0 (N) in PSL(2, ℝ) for N = 2α3β where α = 1, 3, 5, 7, and β = 0 or 2. In these cases the normalizer becomes a triangle group and graphs arising from the action of the normalizer contain quadrilateral circuits. In order to obtain graphs, we first define an imprimitive action of ΓB (N) on using the group (N) and then obtain some properties of the graphs arising from this action.","PeriodicalId":51187,"journal":{"name":"Studia Scientiarum Mathematicarum Hungarica","volume":"353 1","pages":"408-425"},"PeriodicalIF":0.4000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Scientiarum Mathematicarum Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2020.57.3.1473","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

In this study, we investigate suborbital graphs Gu,n of the normalizer ΓB (N) of Γ0 (N) in PSL(2, ℝ) for N = 2α3β where α = 1, 3, 5, 7, and β = 0 or 2. In these cases the normalizer becomes a triangle group and graphs arising from the action of the normalizer contain quadrilateral circuits. In order to obtain graphs, we first define an imprimitive action of ΓB (N) on using the group (N) and then obtain some properties of the graphs arising from this action.
特征为(2,4,∞)的归一化器的四边形单元图
本文研究了PSL(2,∈)中Γ0 (n)的归一化器ΓB (n)的子轨道图Gu,n,当n = 2α3β时,其中α = 1,3,5,7, β = 0或2。在这些情况下,归一化器变成一个三角形群,由归一化器的作用产生的图包含四边形电路。为了得到图,我们首先定义了利用群(N)的一个非基元作用ΓB (N),然后得到了由这个作用产生的图的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The journal publishes original research papers on various fields of mathematics, e.g., algebra, algebraic geometry, analysis, combinatorics, dynamical systems, geometry, mathematical logic, mathematical statistics, number theory, probability theory, set theory, statistical physics and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信