{"title":"Is Q-Learning Minimax Optimal? A Tight Sample Complexity Analysis","authors":"Gen Li, Ee, Changxiao Cai, Yuting Wei","doi":"10.1287/opre.2023.2450","DOIUrl":null,"url":null,"abstract":"This paper investigates a model-free algorithm of broad interest in reinforcement learning, namely, Q-learning. Whereas substantial progress had been made toward understanding the sample efficiency of Q-learning in recent years, it remained largely unclear whether Q-learning is sample-optimal and how to sharpen the sample complexity analysis of Q-learning. In this paper, we settle these questions: (1) When there is only a single action, we show that Q-learning (or, equivalently, TD learning) is provably minimax optimal. (2) When there are at least two actions, our theory unveils the strict suboptimality of Q-learning and rigorizes the negative impact of overestimation in Q-learning. Our theory accommodates both the synchronous case (i.e., the case in which independent samples are drawn) and the asynchronous case (i.e., the case in which one only has access to a single Markovian trajectory).","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"99 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2023.2450","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 50
Abstract
This paper investigates a model-free algorithm of broad interest in reinforcement learning, namely, Q-learning. Whereas substantial progress had been made toward understanding the sample efficiency of Q-learning in recent years, it remained largely unclear whether Q-learning is sample-optimal and how to sharpen the sample complexity analysis of Q-learning. In this paper, we settle these questions: (1) When there is only a single action, we show that Q-learning (or, equivalently, TD learning) is provably minimax optimal. (2) When there are at least two actions, our theory unveils the strict suboptimality of Q-learning and rigorizes the negative impact of overestimation in Q-learning. Our theory accommodates both the synchronous case (i.e., the case in which independent samples are drawn) and the asynchronous case (i.e., the case in which one only has access to a single Markovian trajectory).
期刊介绍:
Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.