A. M. Mezher, J. Cardenas-Barrera, Carlos Lester Dueñas Santos, J. Meng, Eduardo Castillo Guerra
{"title":"ROPS: Recursively Optimized Prepartitioning Strategy to allocate Key Devices Positions in Large-Scale RF Mesh Networks","authors":"A. M. Mezher, J. Cardenas-Barrera, Carlos Lester Dueñas Santos, J. Meng, Eduardo Castillo Guerra","doi":"10.1145/3416011.3424756","DOIUrl":null,"url":null,"abstract":"RF-Mesh networks have been extensively used for the deployment of smart grid communications and large-scale implementations of them are expected to continue growing. As a RF-Mesh network grows, latency becomes a concern and interconnection devices are inserted to increase coverage, performance and resiliency. The optimal position of the interconnection devices and collectors represents a NP-hard problem whose solution is approximated by heuristic and computationally expensive solutions. This paper presents a recursive partitioning approach to positioning key devices in large-scale wireless mesh networks that significantly reduces the computational demand of an existing positioning algorithm. Theoretical analysis of performance improvement, along with results of extensive simulations using a publicly available dataset, demonstrate that the proposed approach can improve the execution time of the original algorithm up to 20 times without affecting important QoS parameters.","PeriodicalId":55557,"journal":{"name":"Ad Hoc & Sensor Wireless Networks","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc & Sensor Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3416011.3424756","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
RF-Mesh networks have been extensively used for the deployment of smart grid communications and large-scale implementations of them are expected to continue growing. As a RF-Mesh network grows, latency becomes a concern and interconnection devices are inserted to increase coverage, performance and resiliency. The optimal position of the interconnection devices and collectors represents a NP-hard problem whose solution is approximated by heuristic and computationally expensive solutions. This paper presents a recursive partitioning approach to positioning key devices in large-scale wireless mesh networks that significantly reduces the computational demand of an existing positioning algorithm. Theoretical analysis of performance improvement, along with results of extensive simulations using a publicly available dataset, demonstrate that the proposed approach can improve the execution time of the original algorithm up to 20 times without affecting important QoS parameters.
期刊介绍:
Ad Hoc & Sensor Wireless Networks seeks to provide an opportunity for researchers from computer science, engineering and mathematical backgrounds to disseminate and exchange knowledge in the rapidly emerging field of ad hoc and sensor wireless networks. It will comprehensively cover physical, data-link, network and transport layers, as well as application, security, simulation and power management issues in sensor, local area, satellite, vehicular, personal, and mobile ad hoc networks.