Bootstrap method for minimum message length autoregressive model order selection

T.O. Olatayo, K.K. Adesanya
{"title":"Bootstrap method for minimum message length autoregressive model order selection","authors":"T.O. Olatayo,&nbsp;K.K. Adesanya","doi":"10.1016/j.jnnms.2014.10.010","DOIUrl":null,"url":null,"abstract":"<div><p>Minimum Message Length MML87 is an information theoretical criterion for model selection and point estimation. In principle, it is a method of inductive inference, and is used in a wide range of approximations and algorithm to determine the ideal model for any given data. In this study, MML87 model selection criterion was investigated and compared with other notably model selection criteria such as Akaike information criterion (AIC), Bayesian information criterion (BIC), Corrected Akaike information criterion (AICc), and Hannan–Quinn (HQ), using Bootstrap Simulation Technique to simulate autoregressive model of order <span><math><mi>P</mi></math></span>. We specified three different counts systems as under inferred, correctly inferred and over inferred. Based on the candidate model explored with autoregressive model and the aggregate true model explored, with the estimated parameters. MML87 performed better than all other model selection criteria through the negative log likelihood function and the mean square prediction error estimated. It is more efficient and correctly inferred.</p></div>","PeriodicalId":17275,"journal":{"name":"Journal of the Nigerian Mathematical Society","volume":"34 1","pages":"Pages 106-114"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jnnms.2014.10.010","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Nigerian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0189896514000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Minimum Message Length MML87 is an information theoretical criterion for model selection and point estimation. In principle, it is a method of inductive inference, and is used in a wide range of approximations and algorithm to determine the ideal model for any given data. In this study, MML87 model selection criterion was investigated and compared with other notably model selection criteria such as Akaike information criterion (AIC), Bayesian information criterion (BIC), Corrected Akaike information criterion (AICc), and Hannan–Quinn (HQ), using Bootstrap Simulation Technique to simulate autoregressive model of order P. We specified three different counts systems as under inferred, correctly inferred and over inferred. Based on the candidate model explored with autoregressive model and the aggregate true model explored, with the estimated parameters. MML87 performed better than all other model selection criteria through the negative log likelihood function and the mean square prediction error estimated. It is more efficient and correctly inferred.

最小消息长度自回归模型顺序选择的自举方法
最小消息长度MML87是一种用于模型选择和点估计的信息理论准则。原则上,它是一种归纳推理方法,并广泛用于近似和算法中,以确定任何给定数据的理想模型。本研究对MML87模型选择准则进行了研究,并与其他主要的模型选择准则(如Akaike信息准则(AIC)、Bayesian信息准则(BIC)、Corrected Akaike信息准则(AICc)和Hannan-Quinn (HQ))进行了比较,利用Bootstrap仿真技术模拟p阶自回归模型,并将三种不同的计数系统分为欠推断、正确推断和过推断。在此基础上用自回归模型探索候选模型,用估计参数探索聚合真值模型。通过负对数似然函数和均方预测误差估计,MML87优于其他所有模型选择标准。它是更有效和正确的推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信