Single step synthesis of ZnO nanostructure thick films and its application as CO gas sensor

P. B. Orpe, A. Shinde, S. Gosavi, R. Aiyer, V. Sathe
{"title":"Single step synthesis of ZnO nanostructure thick films and its application as CO gas sensor","authors":"P. B. Orpe, A. Shinde, S. Gosavi, R. Aiyer, V. Sathe","doi":"10.1109/ISPTS.2012.6260970","DOIUrl":null,"url":null,"abstract":"Single step synthesis of ZnO nanostructure thick films gas sensor has been adopted by using zinc metal as precursor. The ZnO was coated directly onto the alumina substrate by just spreading zinc powder using glass slides and then firing at 700°C for 1,2 and 3 hour and the film nicely adhere to the substrate. The surface morphology was studied using SEM which revealed the formation of different structures such as tetrapods, nanowires and porous structure onto the substrate. The crystal structure of ZnO was observed through X-ray diffraction to be hexagonal wurzite but containing small amount of zinc. UV Absorption spectroscopy shows the blue shift in the wavelength than the bulk ZnO, while blue emission is observed Photoluminescence Spectroscopy with the defect states at the near band edge. Also Raman Spectroscopy was performed in order to study the vibrational modes of ZnO nanostructures in the wavelength range of 200–1100nm. Thus prepared ZnO thick films were tested for 50–150ppm of CO gas in static chamber of volume 24 liters.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPTS.2012.6260970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Single step synthesis of ZnO nanostructure thick films gas sensor has been adopted by using zinc metal as precursor. The ZnO was coated directly onto the alumina substrate by just spreading zinc powder using glass slides and then firing at 700°C for 1,2 and 3 hour and the film nicely adhere to the substrate. The surface morphology was studied using SEM which revealed the formation of different structures such as tetrapods, nanowires and porous structure onto the substrate. The crystal structure of ZnO was observed through X-ray diffraction to be hexagonal wurzite but containing small amount of zinc. UV Absorption spectroscopy shows the blue shift in the wavelength than the bulk ZnO, while blue emission is observed Photoluminescence Spectroscopy with the defect states at the near band edge. Also Raman Spectroscopy was performed in order to study the vibrational modes of ZnO nanostructures in the wavelength range of 200–1100nm. Thus prepared ZnO thick films were tested for 50–150ppm of CO gas in static chamber of volume 24 liters.
ZnO纳米结构厚膜的单步合成及其在CO气体传感器中的应用
以金属锌为前驱体,采用一步法合成了ZnO纳米结构厚膜气体传感器。将ZnO直接涂覆在氧化铝基板上,只需在玻璃载玻片上涂上锌粉,然后在700°C下烧制1、2和3小时,薄膜就能很好地粘附在基板上。利用扫描电镜对表面形貌进行了研究,发现在衬底上形成了四足体、纳米线和多孔结构等不同结构。通过x射线衍射观察到ZnO的晶体结构为六方纤锌矿,但含有少量锌。紫外吸收光谱显示其波长比体ZnO蓝移,而光致发光光谱在近带边缘处观察到蓝色发射的缺陷态。利用拉曼光谱研究了ZnO纳米结构在200 ~ 1100nm波长范围内的振动模式。制备的ZnO厚膜在体积为24升的静态室中,在50-150ppm的CO气体中进行测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信