{"title":"Super-resolution reconstruction of infrared image based on channel attention and transfer learning","authors":"Sun Rui, Zhang Han, Zhi Cheng, Xudong Zhang","doi":"10.12086/OEE.2021.200045","DOIUrl":null,"url":null,"abstract":"In recent years, infrared imaging technology has developed rapidly and has been increasingly used in military reconnaissance, security surveillance, and medical imaging. However, in the process of infrared image imaging or transmission, it is affected by many factors such as environment and equipment. The infrared image often has a low resolution, which greatly reduces the amount of information contained in the infrared image and restricts the application value of the infrared image. Therefore, how to obtain high-resolution and high-information infrared images has become an issue that people urgently need to solve. In recent years, the development of deep learning technology has made rapid progress, and super-resolution methods based on deep learning have begun to appear. However, if A super-resolution reconstruction method of infrared images based on channel attention and transfer learning was proposed to solve the problems of low resolution and low quality of infrared images. In this method, a deep convolutional neural network is designed to enhance the learning ability of the network by introducing the channel attention mechanism, and the residual learning method is used to mitigate the problem of gradient explosion or disappearance and to accelerate the convergence of the network. Because high-quality infrared images are difficult to collect and insufficient in number, so this method is divided into two steps: the first step is to use natural images to pre-train the neural network model, and the second step is to use transfer learning knowledge to fine-tune the pre-trained model’s parameters with a small number of high-quality infrared images to make the model better in reconstructing the infrared image. Finally, a multi-scale detail boosting filter is added to improve the visual effect of the reconstructed infrared image. Experiments on Set5 and Set14 datasets as well as infrared images show that the deepening network depth and introducing channel attention mechanism can improve the effect of super-resolution reconstruction, transfer learning can well solve the problem of insufficient number of infrared image samples, and multi-scale detail boosting filter can improve the details and increase the amount of information of the reconstruction image.these convolutional neural networks are directly applied to the infrared image field, there are some problems: SRCNN, FSRCNN, and ESPCN have fewer network convolutional layers and insufficient network depth, and the learning features will be relatively single, ignoring the differences between image features. The mutual relationship makes it difficult to extract the deep-level information of the infrared image, and SRGAN may generate super-resolution images that are not close to the original image in certain details, which is not conducive to the application of infrared images in military, medical and surveillance. Another problem that needs to be overcome is that it is difficult to collect a sufficient number of high-quality infrared images in real life, and a large number of images of different scenes and targets are required as training samples for common deep learning methods. The infrared images used as training data sets to achieve deep learning methods often fail to achieve the desired effect. In order to solve these problems, this paper proposes a method for super-resolution reconstruction of infrared images based on channel attention and transfer learning. This method first designs a deep convolutional neural network, which integrates the channel attention mechanism to learn the correlation between the channels in the feature space, enhances the learning ability of the network, and uses residual learning to reduce the problem of gradient explosion or disappearance and to speed up network convergence. Then, considering that high-quality infrared images are difficult to collect and insufficient in number, the network training is divided into two steps: the first step uses natural images to pre-train a super-resolution model of natural images, and the second step is to use transfer learning knowledge. Using a small number of high-quality infrared images, the pre-trained model pa-rameters are quickly transferred and fine-tuned to improve the reconstruction effect of the model on the infrared image, thereby obtaining a super-resolution model of the infrared image. Finally, a multi-scale detail boosting (MSDB) module is added to enhance the details and visual effects of the infrared reconstructed image and to increase the amount of in-formation.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
In recent years, infrared imaging technology has developed rapidly and has been increasingly used in military reconnaissance, security surveillance, and medical imaging. However, in the process of infrared image imaging or transmission, it is affected by many factors such as environment and equipment. The infrared image often has a low resolution, which greatly reduces the amount of information contained in the infrared image and restricts the application value of the infrared image. Therefore, how to obtain high-resolution and high-information infrared images has become an issue that people urgently need to solve. In recent years, the development of deep learning technology has made rapid progress, and super-resolution methods based on deep learning have begun to appear. However, if A super-resolution reconstruction method of infrared images based on channel attention and transfer learning was proposed to solve the problems of low resolution and low quality of infrared images. In this method, a deep convolutional neural network is designed to enhance the learning ability of the network by introducing the channel attention mechanism, and the residual learning method is used to mitigate the problem of gradient explosion or disappearance and to accelerate the convergence of the network. Because high-quality infrared images are difficult to collect and insufficient in number, so this method is divided into two steps: the first step is to use natural images to pre-train the neural network model, and the second step is to use transfer learning knowledge to fine-tune the pre-trained model’s parameters with a small number of high-quality infrared images to make the model better in reconstructing the infrared image. Finally, a multi-scale detail boosting filter is added to improve the visual effect of the reconstructed infrared image. Experiments on Set5 and Set14 datasets as well as infrared images show that the deepening network depth and introducing channel attention mechanism can improve the effect of super-resolution reconstruction, transfer learning can well solve the problem of insufficient number of infrared image samples, and multi-scale detail boosting filter can improve the details and increase the amount of information of the reconstruction image.these convolutional neural networks are directly applied to the infrared image field, there are some problems: SRCNN, FSRCNN, and ESPCN have fewer network convolutional layers and insufficient network depth, and the learning features will be relatively single, ignoring the differences between image features. The mutual relationship makes it difficult to extract the deep-level information of the infrared image, and SRGAN may generate super-resolution images that are not close to the original image in certain details, which is not conducive to the application of infrared images in military, medical and surveillance. Another problem that needs to be overcome is that it is difficult to collect a sufficient number of high-quality infrared images in real life, and a large number of images of different scenes and targets are required as training samples for common deep learning methods. The infrared images used as training data sets to achieve deep learning methods often fail to achieve the desired effect. In order to solve these problems, this paper proposes a method for super-resolution reconstruction of infrared images based on channel attention and transfer learning. This method first designs a deep convolutional neural network, which integrates the channel attention mechanism to learn the correlation between the channels in the feature space, enhances the learning ability of the network, and uses residual learning to reduce the problem of gradient explosion or disappearance and to speed up network convergence. Then, considering that high-quality infrared images are difficult to collect and insufficient in number, the network training is divided into two steps: the first step uses natural images to pre-train a super-resolution model of natural images, and the second step is to use transfer learning knowledge. Using a small number of high-quality infrared images, the pre-trained model pa-rameters are quickly transferred and fine-tuned to improve the reconstruction effect of the model on the infrared image, thereby obtaining a super-resolution model of the infrared image. Finally, a multi-scale detail boosting (MSDB) module is added to enhance the details and visual effects of the infrared reconstructed image and to increase the amount of in-formation.