{"title":"Germanium Isotope Geochemistry","authors":"O. Rouxel, B. Luais","doi":"10.2138/RMG.2017.82.14","DOIUrl":null,"url":null,"abstract":"Germanium (Ge) is a trace element in the Earth’s crust and natural waters, averaging about 1.6 ppm in rocks and minerals (El Wardani 1957; Bernstein 1985) and 75 picomol/L in seawater (Froelich and Andreae 1981). The naturally occurring oxidation states of Ge are +2 and +4, with the +4 state forming the principal common and stable compounds. Germanium has outer electronic structure 3 d 10 4 s 2 4 p 2 and mainly occurs in the quadrivalent state, although in some minerals it is octahedrally coordinated. Germanium is chemically similar to silicon (Si), both belonging to the IVA group in the periodic table, with Ge immediately above Si. Germanium is classified as a semimetal, whereas Si is a nonmetal element. Because of nearly identical ionic radii and electron configurations for Ge and Si, the crustal geochemistry of Ge is dominated by a tendency to replace Si in the lattice sites of minerals (Goldschmidt 1958; De Argollo and Schilling 1978b). These two elements exist in seawater as similar hydroxyacids, i.e., Ge(OH)4 and Si(OH)4 (Pokrovski and Schott 1998a) and the concentration profile of Ge is similar to that of Si (Froelich and Andreae 1981), thus making Ge/Si ratio an interesting tracer for biogenic silica cycling in the ocean. Although Ge and Si are geochemically similar, their behavior is different enough so that decoupling of Ge and Si can occur. Germanium commonly occurs in 4-fold (tetrahedral) coordination but in contrast to Si, Ge has a stronger tendency for the 6-fold coordination. Unlike Si, Ge also forms methylated compounds, and high concentrations of monomethyl- and dimethyl-germanium have been detected in ocean waters, accounting for > 70% of the total Ge (Lewis et al. 1985). Germanium is a particularly interesting element for geochemists since it exhibits siderophile, lithophile, chalcophile and …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mineralogy & Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2138/RMG.2017.82.14","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 36
Abstract
Germanium (Ge) is a trace element in the Earth’s crust and natural waters, averaging about 1.6 ppm in rocks and minerals (El Wardani 1957; Bernstein 1985) and 75 picomol/L in seawater (Froelich and Andreae 1981). The naturally occurring oxidation states of Ge are +2 and +4, with the +4 state forming the principal common and stable compounds. Germanium has outer electronic structure 3 d 10 4 s 2 4 p 2 and mainly occurs in the quadrivalent state, although in some minerals it is octahedrally coordinated. Germanium is chemically similar to silicon (Si), both belonging to the IVA group in the periodic table, with Ge immediately above Si. Germanium is classified as a semimetal, whereas Si is a nonmetal element. Because of nearly identical ionic radii and electron configurations for Ge and Si, the crustal geochemistry of Ge is dominated by a tendency to replace Si in the lattice sites of minerals (Goldschmidt 1958; De Argollo and Schilling 1978b). These two elements exist in seawater as similar hydroxyacids, i.e., Ge(OH)4 and Si(OH)4 (Pokrovski and Schott 1998a) and the concentration profile of Ge is similar to that of Si (Froelich and Andreae 1981), thus making Ge/Si ratio an interesting tracer for biogenic silica cycling in the ocean. Although Ge and Si are geochemically similar, their behavior is different enough so that decoupling of Ge and Si can occur. Germanium commonly occurs in 4-fold (tetrahedral) coordination but in contrast to Si, Ge has a stronger tendency for the 6-fold coordination. Unlike Si, Ge also forms methylated compounds, and high concentrations of monomethyl- and dimethyl-germanium have been detected in ocean waters, accounting for > 70% of the total Ge (Lewis et al. 1985). Germanium is a particularly interesting element for geochemists since it exhibits siderophile, lithophile, chalcophile and …
期刊介绍:
RiMG is a series of multi-authored, soft-bound volumes containing concise reviews of the literature and advances in theoretical and/or applied mineralogy, crystallography, petrology, and geochemistry. The content of each volume consists of fully developed text which can be used for self-study, research, or as a text-book for graduate-level courses. RiMG volumes are typically produced in conjunction with a short course but can also be published without a short course. The series is jointly published by the Mineralogical Society of America (MSA) and the Geochemical Society.