On computing the minima of quadratic forms (Preliminary Report)

A. Yao
{"title":"On computing the minima of quadratic forms (Preliminary Report)","authors":"A. Yao","doi":"10.1145/800116.803749","DOIUrl":null,"url":null,"abstract":"The following problem was recently raised by C. William Gear [1]: Let F(x1,x2,...,xn) = &Sgr;i≤j a'ijxixj + &Sgr;i bixi +c be a quadratic form in n variables. We wish to compute the point x→(0) = (x1(0),...,xn(0)), at which F achieves its minimum, by a series of adaptive functional evaluations. It is clear that, by evaluating F(x→) at 1/2(n+1)(n+2)+1 points, we can determine the coefficients a'ij,bi,c and thereby find the point x→(0). Gear's question is, “How many evaluations are necessary?” In this paper, we shall prove that O(n2) evaluations are necessary in the worst case for any such algorithm.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1975-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800116.803749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The following problem was recently raised by C. William Gear [1]: Let F(x1,x2,...,xn) = &Sgr;i≤j a'ijxixj + &Sgr;i bixi +c be a quadratic form in n variables. We wish to compute the point x→(0) = (x1(0),...,xn(0)), at which F achieves its minimum, by a series of adaptive functional evaluations. It is clear that, by evaluating F(x→) at 1/2(n+1)(n+2)+1 points, we can determine the coefficients a'ij,bi,c and thereby find the point x→(0). Gear's question is, “How many evaluations are necessary?” In this paper, we shall prove that O(n2) evaluations are necessary in the worst case for any such algorithm.
二次型最小值的计算(初步报告)
最近,c . William Gear[1]提出了以下问题:设F(x1,x2,…,xn) = &Sgr;i≤j a'ijxixj + &Sgr;i bixi +c是n变量的二次型。我们希望通过一系列自适应函数求值来计算点x→(0)= (x1(0),…,xn(0)),在此点F达到最小值。很明显,通过计算F(x→)在1/2(n+1)(n+2)+1点处的值,我们可以确定系数a'ij,bi,c,从而找到点x→(0)。Gear的问题是,“有多少评估是必要的?”在本文中,我们将证明在最坏的情况下,任何这样的算法都需要O(n2)次求值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信