Prognosis: closed-box analysis of network protocol implementations

Tiago Ferreira, Harrison Brewton, Loris D'antoni, Alexandra Silva
{"title":"Prognosis: closed-box analysis of network protocol implementations","authors":"Tiago Ferreira, Harrison Brewton, Loris D'antoni, Alexandra Silva","doi":"10.1145/3452296.3472938","DOIUrl":null,"url":null,"abstract":"We present Prognosis, a framework offering automated closed-box learning and analysis of models of network protocol implementations. Prognosis can learn models that vary in abstraction level from simple deterministic automata to models containing data operations, such as register updates, and can be used to unlock a variety of analysis techniques -- model checking temporal properties, computing differences between models of two implementations of the same protocol, or improving testing via model-based test generation. Prognosis is modular and easily adaptable to different protocols (e.g. TCP and QUIC) and their implementations. We use Prognosis to learn models of (parts of) three QUIC implementations -- Quiche (Cloudflare), Google QUIC, and Facebook mvfst -- and use these models to analyse the differences between the various implementations. Our analysis provides insights into different design choices and uncovers potential bugs. Concretely, we have found critical bugs in multiple QUIC implementations, which have been acknowledged by the developers.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"382 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452296.3472938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We present Prognosis, a framework offering automated closed-box learning and analysis of models of network protocol implementations. Prognosis can learn models that vary in abstraction level from simple deterministic automata to models containing data operations, such as register updates, and can be used to unlock a variety of analysis techniques -- model checking temporal properties, computing differences between models of two implementations of the same protocol, or improving testing via model-based test generation. Prognosis is modular and easily adaptable to different protocols (e.g. TCP and QUIC) and their implementations. We use Prognosis to learn models of (parts of) three QUIC implementations -- Quiche (Cloudflare), Google QUIC, and Facebook mvfst -- and use these models to analyse the differences between the various implementations. Our analysis provides insights into different design choices and uncovers potential bugs. Concretely, we have found critical bugs in multiple QUIC implementations, which have been acknowledged by the developers.
预测:网络协议实现的闭箱分析
我们提出了一个提供自动封闭盒学习和网络协议实现模型分析的框架。预后可以学习在抽象级别上变化的模型,从简单的确定性自动机到包含数据操作的模型,例如寄存器更新,并且可以用于解锁各种分析技术——模型检查时间属性,计算相同协议的两个实现的模型之间的差异,或者通过基于模型的测试生成来改进测试。预后是模块化的,很容易适应不同的协议(如TCP和QUIC)及其实现。我们使用预后来学习三种QUIC实现的模型(部分)——Quiche (Cloudflare)、Google QUIC和Facebook mvfst——并使用这些模型来分析各种实现之间的差异。我们的分析提供了对不同设计选择的见解,并揭示了潜在的缺陷。具体地说,我们在多个QUIC实现中发现了严重的错误,这些错误已经被开发人员承认。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信