Automatic labeling of phrase accents in German

A. Kiessling, R. Kompe, A. Batliner, H. Niemann, E. Nöth
{"title":"Automatic labeling of phrase accents in German","authors":"A. Kiessling, R. Kompe, A. Batliner, H. Niemann, E. Nöth","doi":"10.21437/ICSLP.1994-32","DOIUrl":null,"url":null,"abstract":"In this paper a method for the automatic labeling of phrase accents is described, based on a large text corpus that has been generated automatically and read by 100 speakers. Perception experiments on a subset of 500 utterances show a high agreement between the automatically generated accent labels and the judgment scores obtained. We computed different prosodic feature vectors from the speech signal for each syllable and trained different Gaussian distribution classifiers and artificial neural networks using the automatically generated accent labels. Recognition rates of up to 83% could be achieved for the distinction of accentuated vs. unaccentuated syllables. Similar results could be obtained for the comparison of the listeners judgments with the automatic classification.","PeriodicalId":90685,"journal":{"name":"Proceedings : ICSLP. International Conference on Spoken Language Processing","volume":"79 1","pages":"115-118"},"PeriodicalIF":0.0000,"publicationDate":"1994-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings : ICSLP. International Conference on Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ICSLP.1994-32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper a method for the automatic labeling of phrase accents is described, based on a large text corpus that has been generated automatically and read by 100 speakers. Perception experiments on a subset of 500 utterances show a high agreement between the automatically generated accent labels and the judgment scores obtained. We computed different prosodic feature vectors from the speech signal for each syllable and trained different Gaussian distribution classifiers and artificial neural networks using the automatically generated accent labels. Recognition rates of up to 83% could be achieved for the distinction of accentuated vs. unaccentuated syllables. Similar results could be obtained for the comparison of the listeners judgments with the automatic classification.
自动标注短语的口音在德国
本文描述了一种基于100位说话者自动生成的大型文本语料库的短语重音自动标注方法。在500个语音子集上的感知实验表明,自动生成的口音标签与获得的判断分数之间具有很高的一致性。我们从语音信号中为每个音节计算不同的韵律特征向量,并使用自动生成的重音标签训练不同的高斯分布分类器和人工神经网络。对于重音节与非重音节的区分,识别率可达83%。听众的判断与自动分类的比较也得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信