An Accurate Viewport Estimation Method for 360 Video Streaming using Deep Learning

Q2 Engineering
Hung-Cuong Nguyen, Thu Ngan Dao, Ngoc Son Pham, Tran Long Dang, Trung Dung Nguyen, T. Truong
{"title":"An Accurate Viewport Estimation Method for 360 Video Streaming using Deep Learning","authors":"Hung-Cuong Nguyen, Thu Ngan Dao, Ngoc Son Pham, Tran Long Dang, Trung Dung Nguyen, T. Truong","doi":"10.4108/eetinis.v9i4.2218","DOIUrl":null,"url":null,"abstract":"Nowadays, Virtual Reality is becoming more and more popular, and 360 video is a very important part of the system. 360 video transmission over the Internet faces many difficulties due to its large size. Therefore, to reduce the network bandwidth requirement of 360-degree video, Viewport Adaptive Streaming (VAS) was proposed. An important issue in VAS is how to estimate future user viewing direction. In this paper, we propose an algorithm called GLVP (GRU-LSTM-based-Viewport-Prediction) to estimate the typical view for the VAS system. The results show that our method can improve viewport estimation from 9.5% to near 20%compared with other methods.","PeriodicalId":33474,"journal":{"name":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","volume":"50 1","pages":"e2"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetinis.v9i4.2218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

Abstract

Nowadays, Virtual Reality is becoming more and more popular, and 360 video is a very important part of the system. 360 video transmission over the Internet faces many difficulties due to its large size. Therefore, to reduce the network bandwidth requirement of 360-degree video, Viewport Adaptive Streaming (VAS) was proposed. An important issue in VAS is how to estimate future user viewing direction. In this paper, we propose an algorithm called GLVP (GRU-LSTM-based-Viewport-Prediction) to estimate the typical view for the VAS system. The results show that our method can improve viewport estimation from 9.5% to near 20%compared with other methods.
基于深度学习的360度视频流准确视口估计方法
在虚拟现实技术日益普及的今天,360度视频是虚拟现实系统的重要组成部分。互联网上360度视频传输由于其庞大的规模而面临许多困难。因此,为了降低360度视频对网络带宽的要求,提出了视口自适应流(Viewport Adaptive Streaming, VAS)。VAS的一个重要问题是如何估计未来用户的观看方向。在本文中,我们提出了一种称为GLVP (GRU-LSTM-based-Viewport-Prediction)的算法来估计VAS系统的典型视图。结果表明,与其他方法相比,我们的方法可以将视口估计从9.5%提高到接近20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
15
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信