Functional Polymer Coated MoS2 Nanocomposites as Promising Lithium Current Sources

O. Balaban, N. Mitina, A. Zaichenko, O. Paiuk, Yu. G. Shermolovich
{"title":"Functional Polymer Coated MoS2 Nanocomposites as Promising Lithium Current Sources","authors":"O. Balaban, N. Mitina, A. Zaichenko, O. Paiuk, Yu. G. Shermolovich","doi":"10.1109/NAP51477.2020.9309574","DOIUrl":null,"url":null,"abstract":"Two types of core - shell structure polymer-inorganic nanoparticles for effective $Li^{+}-$intercalation current generation were synthesized. MoS2 was nanoscale core coated with functional polymer via polymerization initiated from the particles surface using different macroinitiators. Both thermodynamic and kinetic peculiarities of intercalation processes were evaluated by the method of computer modeling of impedance spectroscopy experimental data. Dependences of 1) change in Gibbs’ free energy of the intercalation reaction, 2) Helmholtz’ capacity and 3) charge transfer resistance on the extent of “guest” lithium loading were analyzed. The electrochemical measurements revealed the dependences of above parameters of the intercalation process in core-shell MoS2 nanocomposites on macroinitiator nature. The distinctive feature of macroinitiator fluorine alkyl hydroxy acid was ability of synthesized material to ensure 1) the specific capacity in cathode processes up to $\\sim$1936mAh/g and 2) diffusion coefficient of lithium cations up to more than twice.","PeriodicalId":6770,"journal":{"name":"2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"72 1","pages":"02NEE14-1-02NEE14-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAP51477.2020.9309574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two types of core - shell structure polymer-inorganic nanoparticles for effective $Li^{+}-$intercalation current generation were synthesized. MoS2 was nanoscale core coated with functional polymer via polymerization initiated from the particles surface using different macroinitiators. Both thermodynamic and kinetic peculiarities of intercalation processes were evaluated by the method of computer modeling of impedance spectroscopy experimental data. Dependences of 1) change in Gibbs’ free energy of the intercalation reaction, 2) Helmholtz’ capacity and 3) charge transfer resistance on the extent of “guest” lithium loading were analyzed. The electrochemical measurements revealed the dependences of above parameters of the intercalation process in core-shell MoS2 nanocomposites on macroinitiator nature. The distinctive feature of macroinitiator fluorine alkyl hydroxy acid was ability of synthesized material to ensure 1) the specific capacity in cathode processes up to $\sim$1936mAh/g and 2) diffusion coefficient of lithium cations up to more than twice.
功能聚合物包覆MoS2纳米复合材料作为锂电流源的前景
合成了两种具有有效Li^{+}-$插层电流的核壳结构聚合物-无机纳米颗粒。用不同的高分子引发剂在二硫化钼表面引发聚合,得到了包覆功能聚合物的纳米级核心。利用阻抗谱实验数据的计算机模拟方法对插层过程的热力学和动力学特性进行了评价。分析了1)插层反应的吉布斯自由能变化、2)亥姆霍兹容量和3)电荷转移电阻与“客”锂负载程度的关系。电化学测量揭示了上述参数在核壳二硫化钼纳米复合材料中的嵌入过程与宏观引发剂性质的关系。高分子引发剂氟烷基羟基酸的显著特点是其合成材料能够保证1)阴极比容量高达$\sim$1936mAh/g, 2)锂离子扩散系数高达2倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信