A new multi-criteria fusion model for color textured image segmentation

Lazhar Khelifi, M. Mignotte
{"title":"A new multi-criteria fusion model for color textured image segmentation","authors":"Lazhar Khelifi, M. Mignotte","doi":"10.1109/ICIP.2016.7532825","DOIUrl":null,"url":null,"abstract":"Fusion of image segmentations using consensus clustering and based on the optimization of a single criterion (commonly called the median partition based approach) may bias and limit the performance of an image segmentation model. To address this issue, we propose, in this paper, a new fusion model of image segmentation based on multi-objective optimization which aims to avoid the bias caused by a single criterion and to achieve a final improved segmentation. The proposed fusion model combines two conflicting and complementary segmentation criteria, namely; the region-based variation of information (VoI) criterion and the contour-based F-Measure (precision-recall) criterion with an entropy-based confidence weighting factor. To optimize our energy-based model we use an optimization procedure derived from the iterative conditional modes (ICM) algorithm. The experimental results on the Berkeley database with manual ground truth segmentations clearly show the effectiveness and the robustness of our multi-objective median partition based approach.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"345 1","pages":"2579-2583"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Fusion of image segmentations using consensus clustering and based on the optimization of a single criterion (commonly called the median partition based approach) may bias and limit the performance of an image segmentation model. To address this issue, we propose, in this paper, a new fusion model of image segmentation based on multi-objective optimization which aims to avoid the bias caused by a single criterion and to achieve a final improved segmentation. The proposed fusion model combines two conflicting and complementary segmentation criteria, namely; the region-based variation of information (VoI) criterion and the contour-based F-Measure (precision-recall) criterion with an entropy-based confidence weighting factor. To optimize our energy-based model we use an optimization procedure derived from the iterative conditional modes (ICM) algorithm. The experimental results on the Berkeley database with manual ground truth segmentations clearly show the effectiveness and the robustness of our multi-objective median partition based approach.
一种新的彩色纹理图像分割多准则融合模型
使用共识聚类和基于单一标准优化(通常称为基于中位数划分的方法)的图像分割融合可能会影响图像分割模型的性能。针对这一问题,本文提出了一种新的基于多目标优化的图像分割融合模型,以避免单一准则带来的偏差,最终达到改进的分割效果。所提出的融合模型结合了两个相互冲突又互补的分割准则,即;基于区域的信息变异(VoI)准则和基于轮廓的F-Measure(精确召回率)准则,并带有基于熵的置信度加权因子。为了优化基于能量的模型,我们使用了从迭代条件模式(ICM)算法派生的优化程序。在Berkeley数据库上进行人工地真值分割的实验结果表明了多目标中值分割方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信