EM-Based ML Estimation of Fast Time-Varying Multipath Channels for SIMO OFDM Systems

Souheib Ben Amor, S. Affes, F. Bellili
{"title":"EM-Based ML Estimation of Fast Time-Varying Multipath Channels for SIMO OFDM Systems","authors":"Souheib Ben Amor, S. Affes, F. Bellili","doi":"10.1109/GLOBECOM38437.2019.9014338","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of fast time-varying multipath channel estimation over single-input multiple-output orthogonal frequency-division multiplexing (SIMO OFDM)-type transmissions. We do so by tracking the variations of each complex gain coefficient using a polynomial-in-time expansion. To that end, we derive the log-likelihood function (LLF) in both the data-aided (DA) and non-data-aided (NDA) case. The DA ML estimates are found in closed-form expressions and then used to initialize the expectation maximization (EM) algorithm that is used to iteratively maximize the LLF in the NDA case. We also introduce an alternative initialization procedure that requires less pilot symbols as compared to the DA ML-based solution without incurring a significant performance loss. Simulation results show that the proposed EM-based estimator converges within few iterations providing accurate estimates for all multipath gains, thereby resulting in significant BER gain as compared to the DA least square (LS) technique.","PeriodicalId":6868,"journal":{"name":"2019 IEEE Global Communications Conference (GLOBECOM)","volume":"2 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM38437.2019.9014338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper investigates the problem of fast time-varying multipath channel estimation over single-input multiple-output orthogonal frequency-division multiplexing (SIMO OFDM)-type transmissions. We do so by tracking the variations of each complex gain coefficient using a polynomial-in-time expansion. To that end, we derive the log-likelihood function (LLF) in both the data-aided (DA) and non-data-aided (NDA) case. The DA ML estimates are found in closed-form expressions and then used to initialize the expectation maximization (EM) algorithm that is used to iteratively maximize the LLF in the NDA case. We also introduce an alternative initialization procedure that requires less pilot symbols as compared to the DA ML-based solution without incurring a significant performance loss. Simulation results show that the proposed EM-based estimator converges within few iterations providing accurate estimates for all multipath gains, thereby resulting in significant BER gain as compared to the DA least square (LS) technique.
SIMO OFDM系统快速时变多径信道的基于em的ML估计
研究了单输入多输出正交频分复用(SIMO OFDM)型传输的快速时变多径信道估计问题。我们这样做是通过跟踪每个复杂增益系数的变化使用一个多项式的时间展开。为此,我们推导了数据辅助(DA)和非数据辅助(NDA)情况下的对数似然函数(LLF)。在封闭形式的表达式中找到DA ML估计,然后用于初始化期望最大化(EM)算法,该算法用于迭代地最大化NDA情况下的LLF。我们还引入了一种替代初始化过程,与基于DA ml的解决方案相比,它需要更少的导频符号,而不会造成显著的性能损失。仿真结果表明,所提出的基于em的估计器在几次迭代内收敛,为所有多径增益提供了准确的估计,从而与DA最小二乘(LS)技术相比,产生了显著的误码率增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信