Ramesh Kumar, H. S. Mewara, S. Tripathi, A. Pundir
{"title":"An Image Reconstruction Algorithm with Experimental Validation for Electrical Impedance Tomography Imaging Applications","authors":"Ramesh Kumar, H. S. Mewara, S. Tripathi, A. Pundir","doi":"10.1166/sl.2020.4230","DOIUrl":null,"url":null,"abstract":"In the Non-Invasive Bio Impedance Technique (NIBIT) a low current pulse with high frequency inserted between two electrodes of the object while measuring voltages from the other remaining electrodes with respect to the reference electrode. The electrode arrangement is defined in the\n form of cylindrical shapes of the surface of the phantom. After these arrangements, it inserts the current pulse and measures the voltages according to the selected data acquisition method of bio impedance. The presented algorithm analyzes and defines each obtained data sample from the used\n phantoms and also allows Image Reconstruction (IR) based on developed Graphical User interface (GUI) on MATLAB. The used IR approach is based on Tikhonov regularization and FEM. The FEM and Tikhonov regularization are mathematical approaches that deal with Forward Problem (FP) and Inverse\n Problem (IP) of images. In our approach, the FP solution is identified first in order to reconstruct the conductivity distribution through the EIT inverse solution. Thereafter, This FP is solved through the known current pulse of a given conductivity medium. Likewise, the IP is identified\n and solved through the boundary potential of the object. The end of the obtained result provides a comparable result for the used phantom according to its internal structure. This proposed technique is still reliable despite having some standardization issue according to the procedure.","PeriodicalId":21781,"journal":{"name":"Sensor Letters","volume":"64 1","pages":"410-418"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/sl.2020.4230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the Non-Invasive Bio Impedance Technique (NIBIT) a low current pulse with high frequency inserted between two electrodes of the object while measuring voltages from the other remaining electrodes with respect to the reference electrode. The electrode arrangement is defined in the
form of cylindrical shapes of the surface of the phantom. After these arrangements, it inserts the current pulse and measures the voltages according to the selected data acquisition method of bio impedance. The presented algorithm analyzes and defines each obtained data sample from the used
phantoms and also allows Image Reconstruction (IR) based on developed Graphical User interface (GUI) on MATLAB. The used IR approach is based on Tikhonov regularization and FEM. The FEM and Tikhonov regularization are mathematical approaches that deal with Forward Problem (FP) and Inverse
Problem (IP) of images. In our approach, the FP solution is identified first in order to reconstruct the conductivity distribution through the EIT inverse solution. Thereafter, This FP is solved through the known current pulse of a given conductivity medium. Likewise, the IP is identified
and solved through the boundary potential of the object. The end of the obtained result provides a comparable result for the used phantom according to its internal structure. This proposed technique is still reliable despite having some standardization issue according to the procedure.
期刊介绍:
The growing interest and activity in the field of sensor technologies requires a forum for rapid dissemination of important results: Sensor Letters is that forum. Sensor Letters offers scientists, engineers and medical experts timely, peer-reviewed research on sensor science and technology of the highest quality. Sensor Letters publish original rapid communications, full papers and timely state-of-the-art reviews encompassing the fundamental and applied research on sensor science and technology in all fields of science, engineering, and medicine. Highest priority will be given to short communications reporting important new scientific and technological findings.