The conjugate locus in convex 3-manifolds

Q4 Mathematics
T. Waters, Matthew Cherrie
{"title":"The conjugate locus in convex 3-manifolds","authors":"T. Waters, Matthew Cherrie","doi":"10.53733/139","DOIUrl":null,"url":null,"abstract":"In this paper we study the conjugate locus in convex manifolds. Our main tool is Jacobi fields, which we use to define a special coordinate system on the unit sphere of the tangent space; this provides a natural coordinate system to study and classify the singularities of the conjugate locus. We pay particular attention to 3-dimensional manifolds, and describe a novel method for determining conjugate points. We then make a study of a special case: the 3-dimensional (quadraxial) ellipsoid. We emphasise the similarities with the focal sets of 2-dimensional ellipsoids.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we study the conjugate locus in convex manifolds. Our main tool is Jacobi fields, which we use to define a special coordinate system on the unit sphere of the tangent space; this provides a natural coordinate system to study and classify the singularities of the conjugate locus. We pay particular attention to 3-dimensional manifolds, and describe a novel method for determining conjugate points. We then make a study of a special case: the 3-dimensional (quadraxial) ellipsoid. We emphasise the similarities with the focal sets of 2-dimensional ellipsoids.
凸3流形的共轭轨迹
本文研究凸流形的共轭轨迹。我们的主要工具是雅可比场,我们用它在切空间的单位球上定义一个特殊的坐标系;这为研究和分类共轭轨迹的奇异性提供了一个自然的坐标系。我们特别关注三维流形,并描述了一种确定共轭点的新方法。然后,我们研究了一种特殊情况:三维(四边形)椭球体。我们强调与二维椭球的焦点集的相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Zealand Journal of Mathematics
New Zealand Journal of Mathematics Mathematics-Algebra and Number Theory
CiteScore
1.10
自引率
0.00%
发文量
11
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信