ANN based Auto-Tuned Optimized FCS-MPC for Grid-Connected CSC Inverter

A. N. Alquennah, M. Trabelsi, A. Krama, H. Vahedi, Mostefa Mohamed-Seghir
{"title":"ANN based Auto-Tuned Optimized FCS-MPC for Grid-Connected CSC Inverter","authors":"A. N. Alquennah, M. Trabelsi, A. Krama, H. Vahedi, Mostefa Mohamed-Seghir","doi":"10.1109/SGRE53517.2022.9774145","DOIUrl":null,"url":null,"abstract":"This paper proposes an auto-tuned finite control set-model predictive control (FCS-MPC) for a grid-tied singlephase crossover switches cell (CSC) inverter. The multilevel inverter (MLI) under study generates 9 voltage levels. The FCSMPCobjective is to minimize the total harmonic distortion (THD) of the current fed to the grid with unity power factor while regulating the capacitor voltage at its reference value to maintain the 9 voltage levels. The switching losses are reduced by managing the redundant switching states selection. Artificial Neural Network (ANN) based on the Bayesian regularized feedforward learning technique is applied to predict the optimal weighting factor of the FCS-MPC with respect to the measured reference current value. The effect of using a dynamic weighting factor on the current THD for different reference current peak values (ranging from 2A to 8A) is studied through MATLAB/Simulink simulation. The presented simulation is intended to show that the application of a dynamic weighting factor can significantly enhance the current THD compared to the use of a fixed weighting factor.","PeriodicalId":64562,"journal":{"name":"智能电网与可再生能源(英文)","volume":"16 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能电网与可再生能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/SGRE53517.2022.9774145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes an auto-tuned finite control set-model predictive control (FCS-MPC) for a grid-tied singlephase crossover switches cell (CSC) inverter. The multilevel inverter (MLI) under study generates 9 voltage levels. The FCSMPCobjective is to minimize the total harmonic distortion (THD) of the current fed to the grid with unity power factor while regulating the capacitor voltage at its reference value to maintain the 9 voltage levels. The switching losses are reduced by managing the redundant switching states selection. Artificial Neural Network (ANN) based on the Bayesian regularized feedforward learning technique is applied to predict the optimal weighting factor of the FCS-MPC with respect to the measured reference current value. The effect of using a dynamic weighting factor on the current THD for different reference current peak values (ranging from 2A to 8A) is studied through MATLAB/Simulink simulation. The presented simulation is intended to show that the application of a dynamic weighting factor can significantly enhance the current THD compared to the use of a fixed weighting factor.
基于神经网络的并网CSC逆变器自调谐优化FCS-MPC
提出了一种并网单相交叉开关单元逆变器的自调谐有限控制集模型预测控制(FCS-MPC)。所研究的多电平逆变器产生9个电压电平。FCSMPCobjective是在将电容器电压调节在其参考值上以维持9个电压水平的同时,以单位功率因数将馈电到电网的电流的总谐波失真(THD)最小化。通过对冗余开关状态选择的管理,降低了开关损耗。采用基于贝叶斯正则化前馈学习技术的人工神经网络(ANN)预测FCS-MPC相对于实测参考电流值的最优权重因子。通过MATLAB/Simulink仿真研究了在不同参考电流峰值(2A ~ 8A)下,采用动态加权因子对电流THD的影响。所提出的仿真旨在表明,与使用固定加权因子相比,动态加权因子的应用可以显着提高当前的THD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
307
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信