The application of compressed sensing reconstruction algorithms for MRI of glioblastoma

Haowei Zhang, X. Ren, Y. Liu, Qi-Xu Zhou
{"title":"The application of compressed sensing reconstruction algorithms for MRI of glioblastoma","authors":"Haowei Zhang, X. Ren, Y. Liu, Qi-Xu Zhou","doi":"10.1109/CISP-BMEI.2017.8302072","DOIUrl":null,"url":null,"abstract":"Magnetic resonance imaging has a long examination time, causing additional pain to glioma patients and causing artifacts in the image. In this paper, a combination of compressed sensing and MRI is used. Base pursuit algorithm, matching pursuit algorithm, orthogonal matching pursuit algorithm, stagewise orthogonal matching pursuit algorithm are used to reconstruct the MRI of glioblastoma, and the subjective and objective evaluation of the reconstructed results is carried out by using gray level co-occurrence matrix, peak signal-to-noise ratio and visual image. In this way, the best expression of the image is selected, thus shortening the time of MRI scanning, reducing the pain of the patient and improving the quality of the image.","PeriodicalId":6474,"journal":{"name":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"26 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2017.8302072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Magnetic resonance imaging has a long examination time, causing additional pain to glioma patients and causing artifacts in the image. In this paper, a combination of compressed sensing and MRI is used. Base pursuit algorithm, matching pursuit algorithm, orthogonal matching pursuit algorithm, stagewise orthogonal matching pursuit algorithm are used to reconstruct the MRI of glioblastoma, and the subjective and objective evaluation of the reconstructed results is carried out by using gray level co-occurrence matrix, peak signal-to-noise ratio and visual image. In this way, the best expression of the image is selected, thus shortening the time of MRI scanning, reducing the pain of the patient and improving the quality of the image.
压缩感知重构算法在胶质母细胞瘤MRI中的应用
磁共振成像的检查时间较长,给胶质瘤患者带来额外的疼痛,并在图像中产生伪影。本文采用压缩感知与MRI相结合的方法。采用基追踪算法、匹配追踪算法、正交匹配追踪算法、分阶段正交匹配追踪算法对胶质母细胞瘤MRI进行重构,并利用灰度共生矩阵、峰值信噪比和视觉图像对重构结果进行主客观评价。这样可以选择图像的最佳表达,从而缩短MRI扫描时间,减轻患者的痛苦,提高图像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信