Breast Tumor Segmentation Using K-Means Clustering and Cuckoo Search Optimization

A. Arjmand, S. Meshgini, R. Afrouzian, A. Farzamnia
{"title":"Breast Tumor Segmentation Using K-Means Clustering and Cuckoo Search Optimization","authors":"A. Arjmand, S. Meshgini, R. Afrouzian, A. Farzamnia","doi":"10.1109/ICCKE48569.2019.8964794","DOIUrl":null,"url":null,"abstract":"Today, there are various methods for detecting tumors in breasts. But researchers are still trying to find an exact automatic way to segment the tumors from breast images. In this paper we propose a clustering-based algorithm for automatic tumor segmentation in the MRI samples. In the proposed method, we use k-means clustering algorithm for segmentation and also we use cuckoo search optimization (CSO) algorithm to initialize centroids in the k-means algorithm. We have used RIDER breast dataset to evaluate the proposed method and results clearly show that our algorithm outperforms similar methods such as simple k-means clustering algorithm and Fuzzy C-Means (FCM).","PeriodicalId":6685,"journal":{"name":"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"35 1","pages":"305-308"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE48569.2019.8964794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Today, there are various methods for detecting tumors in breasts. But researchers are still trying to find an exact automatic way to segment the tumors from breast images. In this paper we propose a clustering-based algorithm for automatic tumor segmentation in the MRI samples. In the proposed method, we use k-means clustering algorithm for segmentation and also we use cuckoo search optimization (CSO) algorithm to initialize centroids in the k-means algorithm. We have used RIDER breast dataset to evaluate the proposed method and results clearly show that our algorithm outperforms similar methods such as simple k-means clustering algorithm and Fuzzy C-Means (FCM).
基于k均值聚类和布谷鸟搜索优化的乳腺肿瘤分割
今天,有各种各样的方法来检测乳房肿瘤。但研究人员仍在试图找到一种精确的自动方法,从乳房图像中分割肿瘤。本文提出了一种基于聚类的MRI样本肿瘤自动分割算法。在该方法中,我们使用k-means聚类算法进行分割,并在k-means算法中使用杜鹃搜索优化(CSO)算法初始化质心。我们使用RIDER乳房数据集对所提出的方法进行了评估,结果清楚地表明我们的算法优于类似的方法,如简单k-means聚类算法和模糊C-Means (FCM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信