Malware Identification Method Based on Image Analysis

Yanhua Liu, Jiaqi Li, Baoxu Liu, Xiaoling Gao, Ximeng Liu
{"title":"Malware Identification Method Based on Image Analysis","authors":"Yanhua Liu, Jiaqi Li, Baoxu Liu, Xiaoling Gao, Ximeng Liu","doi":"10.1109/ITME53901.2021.00041","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a malware identification method employed by image analysis and generative adversarial networks, designed to solve the problems of increasingly sophisticated attack forms, insufficient sample data in malware. Specifically, we first generate fixed-size gray images of malware, which neither disassembly nor code execution is required for identification. Moreover, we introduce generative adversarial networks into malware identification for few samples scenarios and malware variants. Through the game training of generator and discriminator, the malware detection model is obtained from the discriminator and the samples are generated by the generator for data augment. Finally, we demonstrate that the proposed method is efficient and feasible using extensive experiments.","PeriodicalId":6774,"journal":{"name":"2021 11th International Conference on Information Technology in Medicine and Education (ITME)","volume":"73 1","pages":"157-161"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Information Technology in Medicine and Education (ITME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITME53901.2021.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a malware identification method employed by image analysis and generative adversarial networks, designed to solve the problems of increasingly sophisticated attack forms, insufficient sample data in malware. Specifically, we first generate fixed-size gray images of malware, which neither disassembly nor code execution is required for identification. Moreover, we introduce generative adversarial networks into malware identification for few samples scenarios and malware variants. Through the game training of generator and discriminator, the malware detection model is obtained from the discriminator and the samples are generated by the generator for data augment. Finally, we demonstrate that the proposed method is efficient and feasible using extensive experiments.
基于图像分析的恶意软件识别方法
本文提出了一种基于图像分析和生成对抗网络的恶意软件识别方法,旨在解决恶意软件中攻击形式日益复杂、样本数据不足的问题。具体来说,我们首先生成固定大小的恶意软件灰度图像,既不需要反汇编也不需要执行代码进行识别。此外,我们将生成对抗网络引入到恶意软件识别中,用于少数样本场景和恶意软件变体。通过生成器和鉴别器的博弈训练,由鉴别器得到恶意软件检测模型,由生成器生成样本进行数据扩充。最后,通过大量的实验验证了该方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信