Understanding Indoor Scenes Using 3D Geometric Phrases

Wongun Choi, Yu-Wei Chao, C. Pantofaru, S. Savarese
{"title":"Understanding Indoor Scenes Using 3D Geometric Phrases","authors":"Wongun Choi, Yu-Wei Chao, C. Pantofaru, S. Savarese","doi":"10.1109/CVPR.2013.12","DOIUrl":null,"url":null,"abstract":"Visual scene understanding is a difficult problem interleaving object detection, geometric reasoning and scene classification. We present a hierarchical scene model for learning and reasoning about complex indoor scenes which is computationally tractable, can be learned from a reasonable amount of training data, and avoids oversimplification. At the core of this approach is the 3D Geometric Phrase Model which captures the semantic and geometric relationships between objects which frequently co-occur in the same 3D spatial configuration. Experiments show that this model effectively explains scene semantics, geometry and object groupings from a single image, while also improving individual object detections.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"76 1","pages":"33-40"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"183","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 183

Abstract

Visual scene understanding is a difficult problem interleaving object detection, geometric reasoning and scene classification. We present a hierarchical scene model for learning and reasoning about complex indoor scenes which is computationally tractable, can be learned from a reasonable amount of training data, and avoids oversimplification. At the core of this approach is the 3D Geometric Phrase Model which captures the semantic and geometric relationships between objects which frequently co-occur in the same 3D spatial configuration. Experiments show that this model effectively explains scene semantics, geometry and object groupings from a single image, while also improving individual object detections.
使用3D几何短语理解室内场景
视觉场景理解是一个将目标检测、几何推理和场景分类相结合的难题。我们提出了一种用于复杂室内场景学习和推理的分层场景模型,该模型在计算上易于处理,可以从合理数量的训练数据中学习,并且避免了过度简化。该方法的核心是三维几何短语模型,该模型捕获在同一三维空间配置中经常共同出现的对象之间的语义和几何关系。实验表明,该模型可以有效地解释单幅图像中的场景语义、几何形状和目标分组,同时也提高了单个目标的检测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信