Maximizing the Edelman–Greene statistic

IF 0.4 Q4 MATHEMATICS, APPLIED
Gidon Orelowitz
{"title":"Maximizing the Edelman–Greene statistic","authors":"Gidon Orelowitz","doi":"10.4310/joc.2023.v14.n2.a1","DOIUrl":null,"url":null,"abstract":"The $\\textit{Edelman-Greene statistic}$ of S. Billey-B. Pawlowski measures the \"shortness\" of the Schur expansion of a Stanley symmetric function. We show that the maximum value of this statistic on permutations of Coxeter length $n$ is the number of involutions in the symmetric group $S_n$, and explicitly describe the permutations that attain this maximum. Our proof confirms a recent conjecture of C. Monical, B. Pankow, and A. Yong: we give an explicit combinatorial injection between a certain collections of Edelman-Greene tableaux and standard Young tableaux.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"71 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2023.v14.n2.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The $\textit{Edelman-Greene statistic}$ of S. Billey-B. Pawlowski measures the "shortness" of the Schur expansion of a Stanley symmetric function. We show that the maximum value of this statistic on permutations of Coxeter length $n$ is the number of involutions in the symmetric group $S_n$, and explicitly describe the permutations that attain this maximum. Our proof confirms a recent conjecture of C. Monical, B. Pankow, and A. Yong: we give an explicit combinatorial injection between a certain collections of Edelman-Greene tableaux and standard Young tableaux.
最大化Edelman-Greene统计量
S. billey的$\textit{Edelman-Greene statistic}$。Pawlowski测量了Stanley对称函数的Schur展开的“短度”。我们证明了这个统计量在cox长度$n$的排列上的最大值是对称群$S_n$中的对合数,并明确地描述了达到这个最大值的排列。我们的证明证实了C. Monical, B. Pankow和a . Yong最近的一个猜想:我们在Edelman-Greene的某些集合和标准Young的集合之间给出了一个明确的组合注入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信