Non-abelian analogs of lattice rounding

IF 0.1 Q4 MATHEMATICS
Evgeni Begelfor, S. Miller, R. Venkatesan
{"title":"Non-abelian analogs of lattice rounding","authors":"Evgeni Begelfor, S. Miller, R. Venkatesan","doi":"10.1515/gcc-2015-0010","DOIUrl":null,"url":null,"abstract":"Abstract Lattice rounding in Euclidean space can be viewed as finding the nearest point in the orbit of an action by a discrete group, relative to the norm inherited from the ambient space. Using this point of view, we initiate the study of non-abelian analogs of lattice rounding involving matrix groups. In one direction, we consider an algorithm for solving a normed word problem when the inputs are random products over a basis set, and give theoretical justification for its success. In another direction, we prove a general inapproximability result which essentially rules out strong approximation algorithms (i.e., whose approximation factors depend only on dimension) analogous to LLL in the general case.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"49 1","pages":"117 - 133"},"PeriodicalIF":0.1000,"publicationDate":"2015-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2015-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract Lattice rounding in Euclidean space can be viewed as finding the nearest point in the orbit of an action by a discrete group, relative to the norm inherited from the ambient space. Using this point of view, we initiate the study of non-abelian analogs of lattice rounding involving matrix groups. In one direction, we consider an algorithm for solving a normed word problem when the inputs are random products over a basis set, and give theoretical justification for its success. In another direction, we prove a general inapproximability result which essentially rules out strong approximation algorithms (i.e., whose approximation factors depend only on dimension) analogous to LLL in the general case.
格舍入的非阿贝尔类比
欧几里得空间中的点阵舍入可以看作是相对于从环境空间继承的范数,寻找离散群在动作轨道上的最近点。利用这一观点,我们开始了涉及矩阵群的格舍入的非阿贝尔类似问题的研究。在一个方向上,我们考虑了当输入是基集上的随机乘积时解决规范词问题的算法,并给出了其成功的理论依据。在另一个方向上,我们证明了一个一般的不可逼近性结果,该结果基本上排除了在一般情况下类似于LLL的强逼近算法(即其近似因子仅依赖于维数)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信