Numerical Analysis of Residual Strength in the Perforated Casing of Ultra Deep Wells

IF 0.8 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yanxian Wu, Shouming Zhong, Z. Guan, Lin Song, Kun Li, Jiarui Sun, Yuqiang Xu, Maochuan Tu, Chao Fan, Jinbin Yang
{"title":"Numerical Analysis of Residual Strength in the Perforated Casing of Ultra Deep Wells","authors":"Yanxian Wu, Shouming Zhong, Z. Guan, Lin Song, Kun Li, Jiarui Sun, Yuqiang Xu, Maochuan Tu, Chao Fan, Jinbin Yang","doi":"10.32604/fdmp.2023.020076","DOIUrl":null,"url":null,"abstract":"A three-dimensional model for the numerical simulation of casing-cement behavior is used to investigate residual strength in the perforated casing of ultra deep wells. The influence of the hole diameter, hole density and phase angle on the residual strength of the casing under non-uniform stress and fracturing conditions is revealed through the consideration of different perforation parameters. It is shown that the residual strength of the casing increases with the hole diameter and periodically changes with the hole density; the phase angle is the main factor that affects the residual strength of the perforated casing, and the perforation should be avoided in the direction of the minimum principal stress to reduce stress concentration at the perforation hole. Moreover, as shown by a companion orthogonal experiment, the descending order of influence of the different influential parameters is: phase angle, hole diameter, hole density and the thickness of casing.","PeriodicalId":45349,"journal":{"name":"FDMP-Fluid Dynamics & Materials Processing","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FDMP-Fluid Dynamics & Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32604/fdmp.2023.020076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

A three-dimensional model for the numerical simulation of casing-cement behavior is used to investigate residual strength in the perforated casing of ultra deep wells. The influence of the hole diameter, hole density and phase angle on the residual strength of the casing under non-uniform stress and fracturing conditions is revealed through the consideration of different perforation parameters. It is shown that the residual strength of the casing increases with the hole diameter and periodically changes with the hole density; the phase angle is the main factor that affects the residual strength of the perforated casing, and the perforation should be avoided in the direction of the minimum principal stress to reduce stress concentration at the perforation hole. Moreover, as shown by a companion orthogonal experiment, the descending order of influence of the different influential parameters is: phase angle, hole diameter, hole density and the thickness of casing.
超深井射孔套管残余强度数值分析
采用三维模型对超深井射孔套管的残余强度进行了数值模拟。通过考虑不同射孔参数,揭示了非均匀应力和压裂条件下,井径、井眼密度和相位角对套管残余强度的影响。结果表明:套管残余强度随井径增大而增大,随井径密度周期性变化;相位角是影响射孔套管残余强度的主要因素,应避免射孔在最小主应力方向,以减少射孔处的应力集中。另外,通过正交试验可知,不同影响参数的影响大小由大到小依次为:相位角、孔径、孔密度、套管厚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FDMP-Fluid Dynamics & Materials Processing
FDMP-Fluid Dynamics & Materials Processing MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.60
自引率
61.50%
发文量
103
期刊介绍: The scope of the Journal is covered by these topics (which could be updated): interplay between fluid motion and materials preparation processes (by means of: experimental investigation; computer modeling & simulation; novel numerical techniques and multiprocessor computations); multi-phase and multi-component systems; pattern formation; multi-scale modeling; interface-tracking methods (e.g., VOF, level-set) and moving boundaries; fluid-structure interactions; solidification; semiconductor crystals; metallurgy; dynamics of dispersed particles, bubbles and droplets (sedimentation, Marangoni migration, coalescence mechanisms, interaction with advancing fronts, etc.); dynamics and static behavior of fluid surfaces and interfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信