On the growth behaviour of Hironaka quotients

IF 0.4 Q4 MATHEMATICS
H. Maugendre, F. Michel
{"title":"On the growth behaviour of Hironaka quotients","authors":"H. Maugendre, F. Michel","doi":"10.5427/jsing.2020.20b","DOIUrl":null,"url":null,"abstract":"We consider a finite analytic morphism $\\phi = (f,g) : (X,p)\\to (\\C^2,0)$ where $(X,p)$ is a complex analytic normal surface germ and $f$ and $g$ are complex analytic function germs. Let $\\pi : (Y,E_{Y})\\to (X,p)$ be a good resolution of $\\phi$ with exceptional divisor $E_{Y}=\\pi ^{-1}(p)$. We denote $G(Y)$ the dual graph of the resolution $\\pi $. We study the behaviour of the Hironaka quotients of $(f,g)$ associated to the vertices of $G(Y)$. We show that there exists maximal oriented arcs in $G(Y)$ along which the Hironaka quotients of $(f,g)$ strictly increase and they are constant on the connected components of the closure of the complement of the union of the maximal oriented arcs.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2017-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2020.20b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

We consider a finite analytic morphism $\phi = (f,g) : (X,p)\to (\C^2,0)$ where $(X,p)$ is a complex analytic normal surface germ and $f$ and $g$ are complex analytic function germs. Let $\pi : (Y,E_{Y})\to (X,p)$ be a good resolution of $\phi$ with exceptional divisor $E_{Y}=\pi ^{-1}(p)$. We denote $G(Y)$ the dual graph of the resolution $\pi $. We study the behaviour of the Hironaka quotients of $(f,g)$ associated to the vertices of $G(Y)$. We show that there exists maximal oriented arcs in $G(Y)$ along which the Hironaka quotients of $(f,g)$ strictly increase and they are constant on the connected components of the closure of the complement of the union of the maximal oriented arcs.
关于Hironaka商的增长行为
考虑一个有限解析态射$\phi = (f,g) : (X,p)\to (\C^2,0)$,其中$(X,p)$是复解析法曲面胚芽,$f$和$g$是复解析函数胚芽。设$\pi : (Y,E_{Y})\to (X,p)$为具有例外除数$E_{Y}=\pi ^{-1}(p)$的良好分辨率$\phi$。我们将分辨率$\pi $的对偶图表示为$G(Y)$。我们研究了$(f,g)$与$G(Y)$顶点相关的Hironaka商的行为。我们证明了$G(Y)$中存在极大定向弧,$(f,g)$的Hironaka商沿此极大定向弧严格增大,并且在极大定向弧并补闭的连通分量上是常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信