Feasibility Studies on improved Proton Energy Reconstruction with IACTs

A. Fattorini, W. Rhode, D. Elsaesser, D. Baack, M. Noethe
{"title":"Feasibility Studies on improved Proton Energy Reconstruction with IACTs","authors":"A. Fattorini, W. Rhode, D. Elsaesser, D. Baack, M. Noethe","doi":"10.22323/1.395.0237","DOIUrl":null,"url":null,"abstract":"Air showers induced by cosmic protons and heavier nuclei constitute the dominant background for very high energy gamma-ray observations of Imaging Air Cherenkov Telescopes (IACTs). Even for strong very high energy gamma-ray sources the signal-to-background ratio in the raw data is typically less than 1:5000. Therefore, a very large statistic of events, induced by cosmic protons and heavier nuclei, is easily available as a byproduct of gamma-ray source observations. In this contribution, we present a feasibility study on improved reconstruction of the energy of primary protons. For the latter purpose, we used a random forest method trained and tested by using Monte Carlo simulations of the MAGIC telescopes, for energies above 70GeV. We employ the aict-tools framework, including machine learning methods for the energy reconstruction. The open-source Python project aict-tools was developed at TU Dortmund and its reconstruction tools are based on scikit-learn predictors. Here, we report on the performance of the proton energy regression with the well-tested and robust random forest approach.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":"333 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.395.0237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Air showers induced by cosmic protons and heavier nuclei constitute the dominant background for very high energy gamma-ray observations of Imaging Air Cherenkov Telescopes (IACTs). Even for strong very high energy gamma-ray sources the signal-to-background ratio in the raw data is typically less than 1:5000. Therefore, a very large statistic of events, induced by cosmic protons and heavier nuclei, is easily available as a byproduct of gamma-ray source observations. In this contribution, we present a feasibility study on improved reconstruction of the energy of primary protons. For the latter purpose, we used a random forest method trained and tested by using Monte Carlo simulations of the MAGIC telescopes, for energies above 70GeV. We employ the aict-tools framework, including machine learning methods for the energy reconstruction. The open-source Python project aict-tools was developed at TU Dortmund and its reconstruction tools are based on scikit-learn predictors. Here, we report on the performance of the proton energy regression with the well-tested and robust random forest approach.
IACTs改进质子能量重构的可行性研究
由宇宙质子和较重的原子核引起的空气阵雨构成了成像空气切伦科夫望远镜(IACTs)高能伽玛射线观测的主要背景。即使对于强大的高能伽玛射线源,原始数据中的信号与背景比通常也小于1:50 000。因此,由宇宙质子和较重的原子核引起的大量事件的统计数据很容易作为伽马射线源观测的副产品得到。在这篇文章中,我们提出了改进初级质子能量重建的可行性研究。对于后一种目的,我们使用了随机森林方法,并通过MAGIC望远镜的蒙特卡罗模拟进行了训练和测试,用于70GeV以上的能量。我们采用ai -tools框架,包括机器学习方法进行能量重建。开源Python项目aict-tools是在多特蒙德大学开发的,它的重建工具是基于scikit-learn预测器的。在这里,我们报告了质子能量回归与经过良好测试和鲁棒随机森林方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信