{"title":"Portfolio performance under benchmarking relative loss and portfolio insurance: From omega ratio to loss aversion","authors":"Tak Wa Ng, Thai Q. Nguyen","doi":"10.1017/asb.2022.26","DOIUrl":null,"url":null,"abstract":"Abstract We study an optimal investment problem under a joint limited expected relative loss and portfolio insurance constraint with a general random benchmark. By making use of a static Lagrangian method in a complete market setting, the optimal wealth and investment strategy can be fully determined along with the existence and uniqueness of the Lagrangian multipliers. Our numerical demonstration for various commonly used random benchmarks shows a trade-off between the portfolio outperformance and underperformance relative to the benchmark, which may not be captured by the widely used Omega ratio and its utility-transformed version, reflecting the impact of the benchmarking loss constraint. Furthermore, we develop a new portfolio performance measurement indicator that incorporates the agent’s utility loss aversion relative to the benchmark via solving an equivalent optimal asset allocation problem with a benchmark-reference-based preference. We show that the expected utility performance is well depicted by looking at this new portfolio performance ratio, suggesting a more suitable portfolio performance measurement under a limited loss constraint relative to a possibly random benchmark.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/asb.2022.26","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We study an optimal investment problem under a joint limited expected relative loss and portfolio insurance constraint with a general random benchmark. By making use of a static Lagrangian method in a complete market setting, the optimal wealth and investment strategy can be fully determined along with the existence and uniqueness of the Lagrangian multipliers. Our numerical demonstration for various commonly used random benchmarks shows a trade-off between the portfolio outperformance and underperformance relative to the benchmark, which may not be captured by the widely used Omega ratio and its utility-transformed version, reflecting the impact of the benchmarking loss constraint. Furthermore, we develop a new portfolio performance measurement indicator that incorporates the agent’s utility loss aversion relative to the benchmark via solving an equivalent optimal asset allocation problem with a benchmark-reference-based preference. We show that the expected utility performance is well depicted by looking at this new portfolio performance ratio, suggesting a more suitable portfolio performance measurement under a limited loss constraint relative to a possibly random benchmark.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.