Application of machine learning techniques for identifying productive zones in unconventional reservoir

Amir Gharavi, Mohamed Hassan, Jebraeel Gholinezhad, Hesam Ghoochaninejad, Hossein Barati, James Buick, Karrar A. Abbas
{"title":"Application of machine learning techniques for identifying productive zones in unconventional reservoir","authors":"Amir Gharavi,&nbsp;Mohamed Hassan,&nbsp;Jebraeel Gholinezhad,&nbsp;Hesam Ghoochaninejad,&nbsp;Hossein Barati,&nbsp;James Buick,&nbsp;Karrar A. Abbas","doi":"10.1016/j.ijin.2022.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Unconventional reservoirs are the productive zones in other words the rock quality and the mechanical properties of the rocks this process is devastating if humans or people try to search for the best reservoirs. So we can use machine learning (ML) algorithms to help us find and search easily and fast for the best reservoirs with less human interaction as possible. The objectives of this paper is to use machine learning (ML) techniques to predict and classify the reservoirs based on the properties of each reservoirs and choose the best reservoir. In this paper we have made a comparison between the different types of machine learning algorithm and described how we get the best and worst result for each one, the comparison we made gave us that the AdaBoost algorithm gave the worst performance measured in the accuracy while the random forest (RF) algorithm gave the best performance, this paper aim to make improvement of the process of searching for productive zones using ML algorithms.</p></div>","PeriodicalId":100702,"journal":{"name":"International Journal of Intelligent Networks","volume":"3 ","pages":"Pages 87-101"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666603022000094/pdfft?md5=2cb2f4012b28bfa5958a29ceb674a4ea&pid=1-s2.0-S2666603022000094-main.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Networks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666603022000094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Unconventional reservoirs are the productive zones in other words the rock quality and the mechanical properties of the rocks this process is devastating if humans or people try to search for the best reservoirs. So we can use machine learning (ML) algorithms to help us find and search easily and fast for the best reservoirs with less human interaction as possible. The objectives of this paper is to use machine learning (ML) techniques to predict and classify the reservoirs based on the properties of each reservoirs and choose the best reservoir. In this paper we have made a comparison between the different types of machine learning algorithm and described how we get the best and worst result for each one, the comparison we made gave us that the AdaBoost algorithm gave the worst performance measured in the accuracy while the random forest (RF) algorithm gave the best performance, this paper aim to make improvement of the process of searching for productive zones using ML algorithms.

机器学习技术在非常规油藏产层识别中的应用
非常规储层是生产层换句话说,岩石的质量和岩石的力学性质这个过程是毁灭性的,如果人类或人们试图寻找最好的储层。因此,我们可以使用机器学习(ML)算法来帮助我们在尽可能少的人工交互的情况下轻松快速地找到和搜索最佳储层。本文的目标是利用机器学习(ML)技术根据每个储层的性质对储层进行预测和分类,并选择最佳储层。在本文中,我们对不同类型的机器学习算法进行了比较,并描述了我们如何获得每种算法的最佳和最差结果,我们所做的比较表明,AdaBoost算法在精度上给出了最差的性能,而随机森林(RF)算法给出了最佳性能,本文旨在改进使用ML算法搜索生产区的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信