{"title":"THE SUMMARIZED FORMULA FOR VELOCITY OF TURBULENT AND LAMINAR FLOWS IN PIPES","authors":"L. Melamed, G. Filippov","doi":"10.30724/1998-9903-2018-20-7-8-136-146","DOIUrl":null,"url":null,"abstract":"On the basis of the solution of the equation of the movement (in conception of «vortex backfill”) offered earlier, the generalized formula for a profile of speed of a turbulent and laminar current in pipes is received. The formula has binomial power shape. The received solution allows to consider speed of a turbulent kernel of a stream, or, more precisely, averaged on time value of axial component of this speed, as the sum of three items - carrying, parabolic and power but not parabolic. It is shown that the profile of turbulent speed of the basic part of a stream is described by the parabolic component. Transformation of the equation of movement in which solutions both laminar, and turbulent profiles of speeds (in the basic part of a stream) are direct lines (or very close to them) is offered. Some features of turbulent flow, similar to currents in a granular layer are noted.","PeriodicalId":33495,"journal":{"name":"Izvestiia vysshikh uchebnykh zavedenii Problemy energetiki","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiia vysshikh uchebnykh zavedenii Problemy energetiki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30724/1998-9903-2018-20-7-8-136-146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
On the basis of the solution of the equation of the movement (in conception of «vortex backfill”) offered earlier, the generalized formula for a profile of speed of a turbulent and laminar current in pipes is received. The formula has binomial power shape. The received solution allows to consider speed of a turbulent kernel of a stream, or, more precisely, averaged on time value of axial component of this speed, as the sum of three items - carrying, parabolic and power but not parabolic. It is shown that the profile of turbulent speed of the basic part of a stream is described by the parabolic component. Transformation of the equation of movement in which solutions both laminar, and turbulent profiles of speeds (in the basic part of a stream) are direct lines (or very close to them) is offered. Some features of turbulent flow, similar to currents in a granular layer are noted.