{"title":"Review on Spectral asymptotics for the semiclassical Bochner Laplacian of a line bundle","authors":"L'eo Morin","doi":"10.5802/cml.83","DOIUrl":null,"url":null,"abstract":". We first give a short introduction to the Bochner Laplacian on a Riemannian manifold, and explain why it acts locally as a magnetic Laplacian. Then we review recent results on the semiclassical properties of semi-excited spectrum with inhomogeneous magnetic field, including Weyl estimates and eigenvalue asymptotics. These results show under specific assumptions that the spectrum is well described by a familly of operators whose symbols are space-dependent Landau levels. Finally we discuss the strength and limitations of these theorems, in terms of possible crossings between Landau levels.","PeriodicalId":52130,"journal":{"name":"Confluentes Mathematici","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Confluentes Mathematici","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/cml.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
. We first give a short introduction to the Bochner Laplacian on a Riemannian manifold, and explain why it acts locally as a magnetic Laplacian. Then we review recent results on the semiclassical properties of semi-excited spectrum with inhomogeneous magnetic field, including Weyl estimates and eigenvalue asymptotics. These results show under specific assumptions that the spectrum is well described by a familly of operators whose symbols are space-dependent Landau levels. Finally we discuss the strength and limitations of these theorems, in terms of possible crossings between Landau levels.
期刊介绍:
Confluentes Mathematici is a mathematical research journal. Since its creation in 2009 by the Institut Camille Jordan UMR 5208 and the Unité de Mathématiques Pures et Appliquées UMR 5669 of the Université de Lyon, it reflects the wish of the mathematical community of Lyon—Saint-Étienne to participate in the new forms of scientific edittion. The journal is electronic only, fully open acces and without author charges. The journal aims to publish high quality mathematical research articles in English, French or German. All domains of Mathematics (pure and applied) and Mathematical Physics will be considered, as well as the History of Mathematics. Confluentes Mathematici also publishes survey articles. Authors are asked to pay particular attention to the expository style of their article, in order to be understood by all the communities concerned.