Review on Spectral asymptotics for the semiclassical Bochner Laplacian of a line bundle

Q4 Mathematics
L'eo Morin
{"title":"Review on Spectral asymptotics for the semiclassical Bochner Laplacian of a line bundle","authors":"L'eo Morin","doi":"10.5802/cml.83","DOIUrl":null,"url":null,"abstract":". We first give a short introduction to the Bochner Laplacian on a Riemannian manifold, and explain why it acts locally as a magnetic Laplacian. Then we review recent results on the semiclassical properties of semi-excited spectrum with inhomogeneous magnetic field, including Weyl estimates and eigenvalue asymptotics. These results show under specific assumptions that the spectrum is well described by a familly of operators whose symbols are space-dependent Landau levels. Finally we discuss the strength and limitations of these theorems, in terms of possible crossings between Landau levels.","PeriodicalId":52130,"journal":{"name":"Confluentes Mathematici","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Confluentes Mathematici","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/cml.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

. We first give a short introduction to the Bochner Laplacian on a Riemannian manifold, and explain why it acts locally as a magnetic Laplacian. Then we review recent results on the semiclassical properties of semi-excited spectrum with inhomogeneous magnetic field, including Weyl estimates and eigenvalue asymptotics. These results show under specific assumptions that the spectrum is well described by a familly of operators whose symbols are space-dependent Landau levels. Finally we discuss the strength and limitations of these theorems, in terms of possible crossings between Landau levels.
线束的半经典Bochner拉普拉斯算子的谱渐近性研究
. 我们首先简要介绍了黎曼流形上的Bochner拉普拉斯算子,并解释了为什么它在局部表现为磁性拉普拉斯算子。然后回顾了近年来关于非均匀磁场下半激发谱的半经典性质的研究成果,包括Weyl估计和特征值渐近。这些结果表明,在特定的假设下,频谱可以用一组算子很好地描述,这些算子的符号是空间相关的朗道能级。最后,我们讨论了这些定理的强度和局限性,在朗道水平之间可能的交叉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Confluentes Mathematici
Confluentes Mathematici Mathematics-Mathematics (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
5
期刊介绍: Confluentes Mathematici is a mathematical research journal. Since its creation in 2009 by the Institut Camille Jordan UMR 5208 and the Unité de Mathématiques Pures et Appliquées UMR 5669 of the Université de Lyon, it reflects the wish of the mathematical community of Lyon—Saint-Étienne to participate in the new forms of scientific edittion. The journal is electronic only, fully open acces and without author charges. The journal aims to publish high quality mathematical research articles in English, French or German. All domains of Mathematics (pure and applied) and Mathematical Physics will be considered, as well as the History of Mathematics. Confluentes Mathematici also publishes survey articles. Authors are asked to pay particular attention to the expository style of their article, in order to be understood by all the communities concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信