A general picture for water dissociation on uranium dioxide surfaces

Wenting Lv , Cui Zhang , Zhongwei Zhao , Haitao Liu , Bo Sun , Yu Yang , Ping Zhang
{"title":"A general picture for water dissociation on uranium dioxide surfaces","authors":"Wenting Lv ,&nbsp;Cui Zhang ,&nbsp;Zhongwei Zhao ,&nbsp;Haitao Liu ,&nbsp;Bo Sun ,&nbsp;Yu Yang ,&nbsp;Ping Zhang","doi":"10.1016/j.nucana.2022.100006","DOIUrl":null,"url":null,"abstract":"<div><p>Despite extensive theoretical and experimental studies, there is still no universal picture for water dissociation on actinide dioxide surfaces. Based on <em>ab initio</em> molecular dynamics studies, we systematically investigated the influences of surface morphology and stoichiometry of the UO<sub>2</sub> (001) surface on the adsorption behavior of a water molecule. We find that the critical factor corresponding to water dissociation is the existence of surface actinide atoms. On the normal UO<sub>2</sub> (001) surface, surface U atoms are ready to bond with dissociated hydroxyl groups and the adsorbed water molecules dissociate spontaneously upon approaching. Comparatively, the surface U atoms on the oxygen-over surface are fully bonded with oxygen atoms, and the approaching water molecule do not dissociate. On a more realistic trench UO<sub>2</sub> surface, we find that approaching water molecules can steadily adsorb in the trench area after weakly bonding with two oxygen atoms in the trench. Our work reveals the vital role of surface actinide atoms in dissociating approaching water molecules, which is meaningful for macroscopic modellings of actinide corrosion.</p></div>","PeriodicalId":100965,"journal":{"name":"Nuclear Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773183922000064/pdfft?md5=d5af094538c45d3cb7f12ca263830959&pid=1-s2.0-S2773183922000064-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773183922000064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite extensive theoretical and experimental studies, there is still no universal picture for water dissociation on actinide dioxide surfaces. Based on ab initio molecular dynamics studies, we systematically investigated the influences of surface morphology and stoichiometry of the UO2 (001) surface on the adsorption behavior of a water molecule. We find that the critical factor corresponding to water dissociation is the existence of surface actinide atoms. On the normal UO2 (001) surface, surface U atoms are ready to bond with dissociated hydroxyl groups and the adsorbed water molecules dissociate spontaneously upon approaching. Comparatively, the surface U atoms on the oxygen-over surface are fully bonded with oxygen atoms, and the approaching water molecule do not dissociate. On a more realistic trench UO2 surface, we find that approaching water molecules can steadily adsorb in the trench area after weakly bonding with two oxygen atoms in the trench. Our work reveals the vital role of surface actinide atoms in dissociating approaching water molecules, which is meaningful for macroscopic modellings of actinide corrosion.

水在二氧化铀表面解离的一般情况
尽管进行了广泛的理论和实验研究,但对于水在二氧化锕系元素表面的解离仍然没有普遍的认识。基于从头算分子动力学研究,我们系统地研究了UO2(001)表面形貌和化学计量对水分子吸附行为的影响。我们发现与水解离相对应的关键因素是表面锕系原子的存在。在正常的UO2(001)表面,表面的U原子已经准备好与解离的羟基结合,吸附的水分子在接近时自发地解离。相比之下,氧过表面上的U原子与氧原子完全结合,接近的水分子不会解离。在更现实的沟槽UO2表面,我们发现接近的水分子与沟槽中的两个氧原子弱结合后,可以稳定地吸附在沟槽区域。我们的工作揭示了表面锕系元素原子在解离接近水分子中的重要作用,这对锕系元素腐蚀的宏观建模具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信