Schur numbers involving rainbow colorings

Mark Budden
{"title":"Schur numbers involving rainbow colorings","authors":"Mark Budden","doi":"10.26493/1855-3974.2019.30b","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce two different generalizations of Schur numbers that involve rainbow colorings. Motivated by well-known generalizations of Ramsey numbers, we first define the rainbow Schur number R S ( n ) to be the minimum number of colors needed such that every coloring of {1, 2, …,  n } , in which all available colors are used, contains a rainbow solution to a  +  b  =  c . It is shown that $$RS(n)=\\floor{\\log _2(n)}+2, \\quad \\mbox{for all } n\\ge 3.$$ Second, we consider the Gallai-Schur number G S ( n ) , defined to be the least natural number such that every n -coloring of {1, 2, …,  G S ( n )} that lacks rainbow solutions to the equation a  +  b  =  c necessarily contains a monochromatic solution to this equation. By connecting this number with the n -color Gallai-Ramsey number for triangles, it is shown that for all n  ≥ 3 , $$GS(n)=\\left\\{ \\begin{array}{ll} 5^k & \\mbox{if} \\ n=2k \\\\ 2\\cdot 5^k & \\mbox{if} \\ n=2k+1.\\end{array} \\right.$$","PeriodicalId":8402,"journal":{"name":"Ars Math. Contemp.","volume":"357 1","pages":"281-288"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Math. Contemp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2019.30b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we introduce two different generalizations of Schur numbers that involve rainbow colorings. Motivated by well-known generalizations of Ramsey numbers, we first define the rainbow Schur number R S ( n ) to be the minimum number of colors needed such that every coloring of {1, 2, …,  n } , in which all available colors are used, contains a rainbow solution to a  +  b  =  c . It is shown that $$RS(n)=\floor{\log _2(n)}+2, \quad \mbox{for all } n\ge 3.$$ Second, we consider the Gallai-Schur number G S ( n ) , defined to be the least natural number such that every n -coloring of {1, 2, …,  G S ( n )} that lacks rainbow solutions to the equation a  +  b  =  c necessarily contains a monochromatic solution to this equation. By connecting this number with the n -color Gallai-Ramsey number for triangles, it is shown that for all n  ≥ 3 , $$GS(n)=\left\{ \begin{array}{ll} 5^k & \mbox{if} \ n=2k \\ 2\cdot 5^k & \mbox{if} \ n=2k+1.\end{array} \right.$$
涉及彩虹色的舒尔数
本文介绍了涉及彩虹着色的舒尔数的两种不同的推广。根据Ramsey数的著名推广,我们首先定义彩虹舒尔数rs (n)为所需的最小颜色数,使得每一种颜色 {1, 2,…,n } ,其中包含a + b = c的彩虹解决方案。结果表明 $$RS(n)=\floor{\log _2(n)}+2, \quad \mbox{for all } n\ge 3.$$ 其次,我们考虑Gallai-Schur数G S (n),它被定义为最小的自然数,使得每一个n -着色 {1, 2,…,G S (n)} 缺少方程a + b = c的彩虹解必然包含这个方程的单色解。通过将该数与三角形的n色Gallai-Ramsey数联系起来,表明对于所有n≥3, $$GS(n)=\left\{ \begin{array}{ll} 5^k & \mbox{if} \ n=2k \\ 2\cdot 5^k & \mbox{if} \ n=2k+1.\end{array} \right.$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信